И РРАЦИОНАЛЬНЫЕ ЧИСЛА Соловей Татьяна Александровна, учитель математики МОУ СОШ 1 с.Екатеринославка 2011.

Презентация:



Advertisements
Похожие презентации
Обухова Наталия Семеновна, МОУ СОШ 17 г.Заволжья Нижегородской области « Числа не управляют миром, но они показывают, как управлять им». ( И. Гёте). (
Advertisements

Иррациональные числа. Алгебра 8 класс Подчеркните верные высказывания: - 5 N; 4,3 N; -1 Z; 3,9/-1,3 Z; 289/17 N; -1681/41 Z;
Представьте в виде рациональной дроби :. Квадратные корни. 8 класс. Повторение. Новосёлова Е. А. МОУ « Усть - Мосихинская СОШ »
Иррациональные числа. Алгебра 8 класс Рассмотрим бесконечную десятичную дробь Данная бесконечная десятичная дробь по определению не является рациональным.
Иррациональные числа Домашнее задание: § ; 11.8 (б); 11.12(а,б); 10.39(а,б). 1.
Периодическая дробь – это бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько.
Обо зн. НазваниеОпределениеОперации N Множество натуральных чисел - множество чисел счета N = {1; 2; 3; … } +, *, степень.
Действительные числа. Рациональные числа 1. Множество натуральных чисел (N) – 1, 2, 3, 4, … 2. Целые числа (N + противоположные им числа + 0). (Z) 3.
Действительные числа mathvideourok.moy.su. Множество рациональных чисел Рационально( латынь) – разумное число N- множество натуральных чисел – это числа.
Иррациональные числа «Холодные числа, внешне сухие формулы математики полны внутренней красоты и жара сконцентрированной в них мысли.» А.Александров.
Презентация к уроку по алгебре (8 класс) по теме: Действительные числа
Множество действительных чисел можно описать как множество всех конечных и бесконечных десятичных дробей. Все конечные и бесконечные десятичные периодические.
АЛГЕБРА И НАЧАЛА АНАЛИЗА 10 КЛАСС Ш. А. АЛИМОВ, Ю. М. КОЛЯГИН И ДР. 15 ИЗД. М.: ПРОСВЕЩЕНИЕ, 2007 Учитель математики Пивоваренок Н. Н. ГОУ Школа 247 Глава.
Развитие понятия числа. Этапы развития понятия числа.
Выполнила: учитель математики Выполнила: учитель математики ГОУ СОШ 457 Ж.Ю. Магаз ГОУ СОШ 457 Ж.Ю. МагазСанкт-Петербург2010.
Рациональные числа Создал: учитель математики Якуткин А.А.
МБОУ лицей 6, г. Шахты Тема урока : Действительные числа
Разинкова Т.Н. специализированная школа 6 г.. Свердловска Луганской области.
Действительные числа + если Вы это знаете - если Вы это не знаете ! если Вас это удивило ? если надо об этом узнать больше.
Бесконечно убывающая геометрическая прогрессия Выполнила учитель математики МОУ «СОШ 17» г. Ангарска Большедворская Светлана Эдуардовна.
Транксрипт:

И РРАЦИОНАЛЬНЫЕ ЧИСЛА Соловей Татьяна Александровна, учитель математики МОУ СОШ 1 с.Екатеринославка 2011

У СТНО 1) -8; 2,1; 7; ; 3,(6); 0; 201; ; -1; 4,2(32) 2) ; - 3,25; 3) 0,125 и 0,038; -2,45 и -2,54; и ; 5,73 и 5,(73); -1,53 и -1,(53); -1,(53) и -1,(35) 4) округлить 13,

Р ЕШИТЬ УРАВНЕНИЕ : х(х-5)=0; (х+5)(2 х-6)=0; (х-1)(х+2)(х-3)=0; 2 х-х 2 =0; х 2 -16=0; х х+25=0

П ОДУМАЙ ! 1. Равна ли нулю дробь? 2. Вычисли устно:

с точностью до 1 с точностью до 0,1

Результат десятичного измерения На каком-то шаге не получится остатка Натуральное число или десятичная дробь Остатки будут получаться на каждом шаге Бесконечная десятичная дробь

При десятичном измерении отрезка ОК получится бесконечная десятичная дробь, которая не является периодической. Это объясняется тем, что среди рациональных чисел нет такого числа, квадрат которого равен 2.

Числа, которые не являются рациональными, то есть не являются ни целыми, ни представимыми в виде дроби вида, где m – целое число, а n – натуральное, называются иррациональными. Изученные множества чисел обозначаются следующим образом: N – множество натуральных чисел; Z – множество целых чисел; Q – множество рациональных чисел; I – множество иррациональных чисел; R – множество действительных чисел.

Бесконечная десятичная дробь Периодическая Рациональные числа Непериодическая Иррациональные числа («ир»- «отрицание») Действительные числа Q

Леонард Эйлер Леонард Эйлер (Россия, середина XYΙΙΙ века) Отношения между множествами чисел наглядно демонстрирует геометрическая круги Эйлера иллюстрация – круги Эйлера N Z QR