Вероятность события 9 класс. Встречаясь в жизни с различными событиями, мы часто даем оценку степени их достоверности. При этом произносим. Например,

Презентация:



Advertisements
Похожие презентации
Вероятность события. Классическое определение вероятности Цель урока: Ввести понятие вероятность, классическое определение вероятности, формировать навык.
Advertisements

Теория вероятности Основные понятия, определения, задачи.
Пример: выпадение герба и решки при однократном бросании монеты. Два события называются несовместными, если они не могут произойти в одном опыте.
Автор: Яковлева Екатерина. Об авторе Ученица 8 «А» средней школы 427. Яковлева Екатерина Александровна Дата рождения года. Проект по Теории.
Еще больше презентаций на. Основы теории вероятности Основные понятия и определения.
алкоголизм война воровство лженаукисадизм Дети в окружении пороков взрослых.
Презентация на тему: Презентация на тему: «Основы теории вероятностей» Презентацию подготовила: Струсевич Анастасия. Презентацию подготовила: Струсевич.
Шепенко Г.Н.- учитель математики Берновской СОШ Старицкого р-на Тверской области.
Основы теории вероятности Основные понятия и определения.
Классическое определение теории вероятности Работу выполнила ученица 9 «Б» класса Антонова Валерия.
Блок 2.Простейшие правила и формулы вычисления вероятностей Выполнила: учитель МОУ Вохомская СОШ Адеева Г.В.
События Случайные события При научном исследовании различных процессов часто приходится встречаться с явлениями, которые принято называть случайными. Случайное.
Составили: учащиеся 5 «а» класса МОУ СОШ 172 Г. Нижний Новгород Научный руководитель: Кирпичева Е.Е.
Тема 2 Операции над событиями. Условная вероятность План: 1.Операции над событиями. 2.Условная вероятность.. Если и, то Часто возникает вопрос: насколько.
Задача 1 Задача 1 Какова вероятность того, что при бросании игральной кости выпадает число очков, больше 4?Какова вероятность того, что при бросании игральной.
«Простейшие вероятностные задачи».. Замечательно, что наука, которая начала с рассмотрения азартных игр, обещает стать наиболее важным объектом человеческого.
Каникулярная школа курс Теория вероятностей Преподаватель Кузнецова Ольга Владимировна.
Жорж Бюссон ( ) бросал монету 4040 раз, и орел выпал в 2048 случаях. Жорж Бюссон ( ) бросал монету 4040 раз, и орел выпал в 2048 случаях.
Теория вероятности и статистика.
Тема урока: «Простейшие вероятностные задачи». 11 класс.
Транксрипт:

Вероятность события 9 класс

Встречаясь в жизни с различными событиями, мы часто даем оценку степени их достоверности. При этом произносим. Например, такие слова: Встречаясь в жизни с различными событиями, мы часто даем оценку степени их достоверности. При этом произносим. Например, такие слова: «Это невероятно» - говорим мы о том, что вода в холодильнике закипела «Это невероятно» - говорим мы о том, что вода в холодильнике закипела «Маловероятно, что сегодня будет идти дождь» - говорим, глядя на безоблачное небо летним утром «Маловероятно, что сегодня будет идти дождь» - говорим, глядя на безоблачное небо летним утром

Вопрос о возможности измерения степени достоверности наступления какого-либо события задавали себе многие ученые Основателями теории вероятности были французские математики XVII века Б. Паскаль и П. Ферма, и голландский ученый Х. Гюйгенс Основателями теории вероятности были французские математики XVII века Б. Паскаль и П. Ферма, и голландский ученый Х. Гюйгенс Б. Паскаль П.Ферма Х. Гюйгенс

Наблюдая за игрой в кости, Наблюдая за игрой в кости, Б. Паскаль высказал идею измерения степени уверенности в выигрыше некоторым числом. Б. Паскаль высказал идею измерения степени уверенности в выигрыше некоторым числом. Б. Паскаль рассуждал, что, когда игрок бросает игральную кость, он не знает, какое число очков выпадет. Но он знает, что каждое из чисел - 1, 2, 3, 4, 5, 6 имеет одинаковую долю успеха в своем появлении. Появление же одного из этих чисел в каждом испытании – событие достоверное Б. Паскаль рассуждал, что, когда игрок бросает игральную кость, он не знает, какое число очков выпадет. Но он знает, что каждое из чисел - 1, 2, 3, 4, 5, 6 имеет одинаковую долю успеха в своем появлении. Появление же одного из этих чисел в каждом испытании – событие достоверное

Вероятность события Если принять возможность наступления достоверного события за 1, то возможность появления, например, шестерки в шесть раз меньше, т. е. равна 1/6 Если принять возможность наступления достоверного события за 1, то возможность появления, например, шестерки в шесть раз меньше, т. е. равна 1/6 Долю успеха того или иного события математики называют вероятностью этого события (от латинского probabilitas – «вероятность»)

Вероятность события Если буквой А обозначить событие – Если буквой А обозначить событие – «выпало 6 очков» при одном бросании игральной кости, то вероятность события А обозначают Р(А) и записывают «выпало 6 очков» при одном бросании игральной кости, то вероятность события А обозначают Р(А) и записывают Р(А) = 1/6 Читают: «вероятность события А равна одной шестой»

Задача Поверхность рулетки разделена диаметрами на 4 части. Найти вероятность того, что раскрученная стрелка рулетки остановится в секторе 3 Поверхность рулетки разделена диаметрами на 4 части. Найти вероятность того, что раскрученная стрелка рулетки остановится в секторе В одном испытании с раскручиванием стрелки возможны 4 равновозможных события (исхода испытания). Достоверное событие – «стрелка остановится на каком- нибудь из секторов». Вероятность наступления достоверного события равна 1, а вероятность события А – «стрелка остановится в секторе 3» в 4 раза меньше, т. е. равна 1/4 Р(А) = 1/4

Вероятность события Помимо рассмотренных элементарных событий можно рассматривать и более сложные события. Помимо рассмотренных элементарных событий можно рассматривать и более сложные события. Например, «выпадение четного числа очков при одном бросании игральной кости» Например, «выпадение четного числа очков при одном бросании игральной кости» Это событие наступает в трех случаях – когда выпадет 2, или 4, или 6 очков. Все эти исходы благоприятствуют событию А, тогда Р(А) = 3/6 = 1/2

Вероятность события Если в некотором испытании существует n равновозможных попарно несовместных исхода Если в некотором испытании существует n равновозможных попарно несовместных исхода и m из них благоприятствуют событию А, то вероятностью наступления события А называют отношение m / n и m из них благоприятствуют событию А, то вероятностью наступления события А называют отношение m / n Р(А) = m / n

Задача Найти вероятность появления при одном бросании кости числа очков, большего 4 Найти вероятность появления при одном бросании кости числа очков, большего 4 Событию А – «появление числа очков, большего 4», благоприятствуют 2 исхода (появление 5 или 6 очков), т. е. m = 2, n = 6, следовательно, т. е. m = 2, n = 6, следовательно, Р(А) = m / n = 2/6 = 1/3

Задача Поверхность рулетки разделена На 8 равных частей. Найти вероятность того, что после раскручивания стрелка рулетки остановится на закрашенной части Поверхность рулетки разделена На 8 равных частей. Найти вероятность того, что после раскручивания стрелка рулетки остановится на закрашенной части Существует 8 исходов испытания, т. е. n = 8 В закрашенную часть рулетки попадают три сектора, значит число благоприятствующих исходов m = Р(А) = m / n = 3/8

Если событие А - достоверное, то ему благоприятствуют все возможные исходы испытания, т. e. m = n, тогда Если событие А - достоверное, то ему благоприятствуют все возможные исходы испытания, т. e. m = n, тогда Р(А) = m/n = 1 Р(А) = m/n = 1 О вероятностях наступления достоверных, невозможных и случайных событий на основании формулы Р(А) = m/n можно рассуждать следующим образом Если событие А – невозможное, то не существует исходов благоприятствующих его появлению т. e. m = 0, тогда Если событие А – невозможное, то не существует исходов благоприятствующих его появлению т. e. m = 0, тогда Р(А) = m/n = 0/n = 0 Р(А) = m/n = 0/n = 0 Если событие А – случайное, то число m благоприятствующих его появлению исходов удовлетворяет условию 0 < m < n, тогда Если событие А – случайное, то число m благоприятствующих его появлению исходов удовлетворяет условию 0 < m < n, тогда 0 < Р(А) = m/n < 1 0 < Р(А) = m/n < 1 0 P(A) 1

Задача Перечислите все элементарные возможные события, которые могут произойти в результате: Перечислите все элементарные возможные события, которые могут произойти в результате: а) подбрасывания монеты б) подбрасывания тетраэдра с гранями, занумерованными числами 1, 2, 3, 4 (появление орла, появление решки) (грань 1, или 2, или 3, или 4) 1 2 4

Задача В ящике находятся 2 белых и 3 черных шара. Наугад вынимается один шар. Какова вероятность того, что вынутый шар В ящике находятся 2 белых и 3 черных шара. Наугад вынимается один шар. Какова вероятность того, что вынутый шар а) белый б) черный Существует 5 равновозможных исходов испытания, n = 5 a) число благоприятствующих исходов m = 2 Р(А) = m / n = 2/5 б) число благоприятствующих исходов m = 3 Р(А) = m / n = 3/5