Диэлектрические потери. В электрическом поле диэлектрики нагреваются, т.к. часть энергии электрического поля рассеива- ется в диэлектриках в виде тепла.

Презентация:



Advertisements
Похожие презентации
Электропроводность диэлектриков. Электропроводность – способность материала проводить электрический ток. Электрический ток – направленное движение заряженных.
Advertisements

Введение в физические свойства твёрдых тел Лекция 8. Поляризация диэлектриков. Ионная проводимость т.т.
Основы электростатики. Закон Кулона Сила взаимодействия между точечными, а также сферически симметричными заряженными телами определяется законом Кулона:
Лекция 10 Электрическое поле в среде. Поляризация диэлектриков План лекции. 1. Электрический диполь. Диполь в однородном и неоднородном поле. 2. Диэлектрики.
Электромагнитные колебания 1. Свободные колебания в электрическом контуре без активного сопротивления 2. Свободные затухающие электрические колебания 3.
Тема 1 ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ЦЕПИ Общие сведения ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ЦЕПИ Общие сведения.
Электрофизические свойства проводниковых материалов Автор Останин Б.П. Эл. физ. свойства проводниковых материалов. Слайд 1. Всего 12 Конец слайда.
Основы теории электролитической диссоциации Аррениуса Предпосылки создания теории Для электролитов повышение температуры кипения, понижение температуры.
Лекция 3,4. Проводник в электрическом поле. Равновесие зарядов на проводнике Внутри проводника поля нет (q = 0, E = 0, = const) Заряды распределяются.
Электродинамика Лекция 10. Работа в электрическом поле. Потенциал При перемещении пробного заряда q в электрическом поле электрические силы совершают.
Лекция 12 Емкостные преобразователи Емкостный преобразователь представляет собой конденсатор, электрические параметры которого изменяются под действием.
Главные цели использования данной презентации – это активизация познавательной деятельности учащихся, усвоение изучаемого материала учащимися на более.
Презентация по теме: «Полупроводниковые диоды» Выполнили: Бармин Р.А. Гельзин И.Е.
Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.
Горячев Всеволод Школа 18 8 Б класс. Диэлектрик (изолятор) вещество, среда, материал, практически не проводящие электрический ток. Основное свойство диэлектрика.
Электродинамика Лекция 11. Электрический ток. Закон Ома в проводниках может при определенных условиях возникнуть непрерывное упорядоченное движение свободных.
На этом уроке мы рассмотрим поведение в электрическом поле веществ, которые не могут проводить электрический ток (диэлектриков), и тех веществ, которые.
Главные цели использования данной презентации – это активизация познавательной деятельности учащихся, усвоение изучаемого материала учащимися на более.
Закон Ома для полной цепи переменного тока.
Нагревание проводников электрическим током. Закон Джоуля-Ленца Выполнил учитель МКОУ Боровская ООШ Тоболов А.Н. Q=I 2 Rt A=UIt Q=A U=IR А=IRIt.
Транксрипт:

Диэлектрические потери

В электрическом поле диэлектрики нагреваются, т.к. часть энергии электрического поля рассеивается в диэлектриках в виде тепла. Рассеиваемая за единицу времени энергия называется диэлектрическими потерями (ДП). Нагрев диэлектриков приводит к ухудшению их свойств и ускорению процессов старения: в силовой электротехнике нагрев приводит к уменьшению электрической прочности, а значит к уменьшению надежности оборудования; в слаботочных устройствах нагрев приводит к уменьшению сопротивления изоляции, т.е. к повышению токов утечки в цепях.

Диэлектрические потери используются для термообработки материалов, которая называется диэлектрическим нагревом ( для полимеризации некоторых изделий из пластмасс). Диэлектрический нагрев отличается от классических способов нагрева тем, что он протекает равномерно по всему объему и не возникает внутренних механических напряжений в результате неравномерности распределения температуры.

Количественная оценка ДП Абсолютная величина ДП – Ра (мощность, рассеиваемая в диэлектрике в виде тепла); Удельные ДП -,т.е. диэлектрические потери, приходящиеся на единицу объема материала; Угол ДП и тангенс этого угла, которые не зависят от объема диэлектрика и характеризуют качество самого материала.

Схемы замещения диэлектрика Идеальный диэлектрик Реальный диэлектрик ( без потерь)

Параллельная схема замещения

Последовательная схема замещения

Мощность ДП определяется по формуле: Параллельная схема замещения Мощность ДП определяется по формуле: и ДП не зависят от схемы замещения, но емкости значительно различаются:

Для высококачественных диэлектриков, поэтому для последовательной схемы: = Для параллельной схемы замещения: Тогда Cp=Cs=C и ДП зависят от величины приложенного напряжения, частоты, а также от свойств самого диэлектрика: и.

Виды диэлектрических потерь ДП, обусловленные поляризацией ( в диэлектриках с релаксационными видами поляризации); ДП, обусловленные сквозной электропроводностью (во всех диэлектриках); ДП, обусловленные ионизацией ( происходят в сильных электрических полях); ДП, обусловленные неоднородностью структуры (только в твердых диэлектриках неоднородной структуры).

Процессы поляризации, электропроводности и ионизации независимы, следовательно ДП являются суммой составляющих, вызванных отдельными механизмами потерь. Процессы поляризации, электропроводности и ионизации независимы, следовательно ДП являются суммой составляющих, вызванных отдельными механизмами потерь. ДП, обусловленные релаксационными видами поляризации наблюдаются: - в полярных диэлектриках; - в полярных диэлектриках; - в диэлектриках ионной структуры с неплотной упаковкой ионов; - в диэлектриках ионной структуры с неплотной упаковкой ионов; - в сегнетоэлектриках; - в сегнетоэлектриках; - в диэлектриках неоднородной структуры; - в диэлектриках неоднородной структуры; - при высоких частотах наблюдаются резонансные потери, связанные с резонансной поляризацией. - при высоких частотах наблюдаются резонансные потери, связанные с резонансной поляризацией.

ДП, обусловленные сквозной электропроводностью Для данного вида потерь : (1) т.е. ДП данного вида не зависят от частоты, а ДП возрастают с увеличением температуры по экспоненте:, где А и b – постоянные материала.

Или, где Pat – потери при определенной температуре; Рао – потери при - постоянная материала. Ионизационные потери. Данный вид ДП характерен для газов и проявляется в диэлектриках пористой структуры: где - постоянный коэффициент, f – частота электрического поля, U – приложенное напряжение, Uu – напряжение ионизации. ДП, обусловленные неоднородностью структуры наблюдаются: -в слоистых диэлектриках ; -в пористой керамике; -в пропитанной бумаге и т.п.

Диэлектрические потери в газах В слабых электрических полях: Так как все газы либо неполярный, либо слабополярны, то в них отсутствуют потери на поляризацию. Есть потери только на электропроводность. Для газов, и при f=50 Гц Таким образом газы являются практически идеальными диэлектриками в слабых электрических полях.

В сильных электрических полях: Так как в сильных электрических полях развивается ударная ионизация, то появляются потери на ионизацию и увеличивается. Зависимость от величины приложенного напряжения называется кривой ионизации.

Диэлектрические потери в жидких диэлектриках Неполярные жидкие диэлектрики - в них нет потерь на поляризацию (электронная поляризация), присутствуют потери на электропроводность, но т.к. мала, то малы и ДП, а может быть рассчитан по формуле (1). Диэлектрические потери зависят от температуры ( увеличиваются по экспоненте при повышении температуры) и не зависят от частоты внешнего электрического поля.