Пусть прямая задана уравнением: И пусть задана плоскость Рассмотрим возможные случаи ориентации прямой и плоскости:

Презентация:



Advertisements
Похожие презентации
Урок 2 Прямая на плоскости.. Взаимное расположение прямых на плоскости Прямые на плоскости могут совпадать, пересекаться или быть параллельными. 1. Пусть.
Advertisements

Прямая на плоскости Общее уравнение прямой Уравнение прямой в отрезках Каноническое уравнение прямой Уравнение прямой с угловым коэффициентом Угол между.
Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними. Скалярное произведение нулевых векторов равно нулю тогда.
Урок1 Прямая на плоскости.. Виды уравнений прямой на плоскости. Прямая на плоскости может быть задана одним из следующих ниже уравнений. 1. Прямая на.
Прямая в пространстве Каноническое уравнение прямой Параметрическое уравнение прямой Уравнение прямой, как линии пересечения двух плоскостей Угол между.
Аналитическая геометрия Лекции 8,9. Прямая на плоскости.
§ 13. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Плоскость и прямая в пространстве Лекция 10. Определение. Уравнением поверхности в пространстве называется такое уравнение между переменными которому.
§ 4. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Плоскость и прямая в пространстве Лекции 10, 11. Определение. Уравнением поверхности в пространстве называется такое уравнение между переменными которому.
Метод координат в задачах С 2 Стереометрия. Угол между прямыми - направляющий вектор прямой а - направляющий вектор прямой b - угол между прямыми.
Угол между прямой и плоскостью Работу выполнила ученица 11 «В» класса Паршина Анисия.
ПРЯМАЯ НА ПЛОСКОСТИ. Уравнение линии на плоскости. Определение. Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих.
3. Взаимное расположение прямых в пространстве В пространстве две прямые могут: а) быть параллельны, б) пересекаться, в) скрещиваться. Пусть прямые 1 и.
ГЛАВА 3 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. §1. Прямая на плоскости. Различные виды уравнений прямой на плоскости. Пусть имеется прямоугольная система координат.
Прямая в пространстве. Общее уравнение прямой Прямая линия в пространстве определяется как линия пересечения двух плоскостей.
Скалярное произведение векторов. Угол между векторами:
3. Взаимное расположение плоскостей В пространстве две плоскости могут: а) быть параллельны, б) пересекаться. Пусть уравнения плоскостей λ 1 и λ 2 имеют.
Уравнение плоскости Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно не равны нулю.
11 класс. Угол между векторами. Скалярное произведение векторов.
Транксрипт:

Пусть прямая задана уравнением: И пусть задана плоскость Рассмотрим возможные случаи ориентации прямой и плоскости:

1 Прямая принадлежит плоскости. ортогонален нормальному вектору плоскости И пусть точка Тогда направляющий вектор прямой принадлежит прямой.

Тогда выполняются следующие условия: и в этом случае перпендикулярны, и их скалярное произведение этих векторов равно нулю: Поскольку вектора Поскольку точка М 0 будет принадлежать плоскости, то ее координаты удовлетворяют уравнению плоскости: 1 2

2 Прямая параллельна плоскости. Прямая пересекает плоскость в одной точке. Тогда выполняется условие Тогда выполняется только условие (1). 3

Углом между прямой и плоскостью называется меньший из двух углов между этой прямой и ее проекцией на плоскость.

Синус угла φ между прямой и плоскостью равен косинусу угла α между нормальным вектором плоскости и направляющим вектором прямой: Найдем угол α, как угол между двумя векторами:

Если прямая перпендикулярна плоскости, то направляющий вектор прямой параллелен нормальному вектору плоскости:

Если прямая параллельна плоскости, то