Оглавление Понятие числового неравенства Свойство 1 Свойство 2 Свойство 3 Свойство 4 Свойство 5 Свойство 6 Свойство 7 Применение свойств: 8 класс 9 класс.

Презентация:



Advertisements
Похожие презентации
Числовые неравенства и их свойства
Advertisements

Числовые неравенства и их свойства
Оглавление Понятие числового неравенства Свойство 1 Свойство 2 Свойство 3 Свойство 4 Свойство 5 Свойство 6 Свойство 7 Применение свойств: 8 класс 9 класс.
Определение: 1.Действительное число а больше действительного числа b, если их разность а-b – положительное число. 2. Действительное число а меньше действительного.
Содержание Определение Что значит сравнить числа Основные свойства Сложение и умножение неравенств Возведение в степень.
Свойства числовых неравенств. Теорема 1 Если а>b, то b0, то b-a.
«Сложение и умножение числовых неравенств». Цель урока: 1. Рассмотреть теоремы о почленном сложении и умножении неравенств 2. Научиться применять их при.
Х у Постройте при k>0 графики следующих функций: х у х у х у х у.
Урок 18 Зачет по равенствам и неравенствам. Свойства равенств Определение: 1. Если а=b, и b=c, то a=c 2.Если a=b, то a+c=b+c для любого с. 3.Если a+c=b,
Свойства числовых неравенств А – 8 урок 1. Если а>b, то b a 80 cм 50 cм 80 > < 80.
Обратные тригонометрические функции у=arcsinx график у=arccosx график у=arctgx график у=arcctgx график.
Числовые неравенства Свойства числовых неравенств.
ПРЕЗЕНТАЦИЯ ПО ТЕМЕ НЕРАВЕНСТВА /8 класс/ СОДЕРЖАНИЕ ТЕМЫ Введение Виды неравенств Виды неравенств Виды неравенств Виды неравенств Свойства числовых.
Математика Свойства числовых неравенств (8 класс) Разработано учителем математики МОУ «СОШ» п. Аджером Корткеросского района Республики Коми Мишариной.
«Функция, как правило, определяется для тех значений аргумента, какие для данной задачи представляют реальное значение» Хинчин А.Я.
Познакомившись с действительными числами, узнав об их свойствах, мы научились проводить различные арифметические операции над ними, такие как алгебраические.
Числовые неравенства и их свойства Методическая разработка учителя Поляковой Е. А.
Неравенства.. 1). Определение 1). Определение 1). Определение 1). Определение 2). Виды 2). Виды2). Виды2). Виды 3). Свойства числовых неравенств 3). Свойства.
12 класс экстернат. Корень п – ой степени. Определение квадратного корня из числа а Это такое число, квадрат которого равен а Обозначение:
Алгебра 8 класс Ш. А. Алимов. Составила: Вязигина Т. И.
Транксрипт:

Оглавление Понятие числового неравенства Свойство 1 Свойство 2 Свойство 3 Свойство 4 Свойство 5 Свойство 6 Свойство 7 Применение свойств: 8 класс 9 класс 10 – 11 классы

Определение: 1. Действительное число а больше действительного числа b, если их разность а-b – положительное число. 2. Действительное число а меньше действительного числа b, если их разность а-b – отрицательное число. Пишут a>b или a<b.

> «больше» < «меньше» >= «больше или равно» <= «меньше или равно»

а>0 означает, что а – положительное число; а>=0 означает, что а –неотрицательное число (положительное или 0); а<0 означает, что а – отрицательное число. а<=0 означает, что а – неположительное число (отрицательное или 0). Оглавление

Свойство 1. Если a>b и b>c, то a>c. Доказательство. Оглавление

Если к обеим частям неравенства прибавить одно и тоже число, то знак неравенства следует сохранить Если a>b, то a+c>b+c. Примеры: Если a<b, то a+7<b+7 Если a>b, то a-5>b-5 Оглавление

Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства следует сохранить. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства следует изменить. Примеры: Если a>b, то 4a>4b Если a -9b Если a>b, то -a<-b Оглавление

Если a>b и c>d, то a+c>b+d Доказательство. a>b (свойство 2) c>d (Свойство 2) a+c>b+cc+b>d+ba+c>b+d (Свойство 1) Оглавление

Если a,b,c,d – положительные числа и a>b, c>d, ас >bd Доказательство a>b и c>0 (свойство 3) ac>bc c>d и b>0 (свойство 3) cb>db ac>bd (Свойство 1) Оглавление

Если a и b - неотрицательные числа и a>b, то a*n>b*n, где n - любое натуральное число. Если n – нечетное число, то для любых чисел a и b из неравенства a>b следует неравенство того же смысла a*n>b*n. Оглавление

Свойство 7 Если а и b - положительные числа и а>b, то 1 1 а b Оглавление

Дано: 8 < a < 10 1 < b < 2 Оцените значение выражения 2 а-3b Решение: 2 а 2 а 8<а<10 <2016< 1<b<2 <-3-3b-6< 10<2 а-3b<17 8 класс

Дано: 5<a<12 3<b<4 4a b4a b 5<a<123<b<4 4a<4820< 1b1b a b 5 16 Оглавление

Доказательство : Если х > x -5x < -5x -5x +4 < -5x +4 f(x ) < f(x )y=-5x+4 убывает 9 класс

Доказательство : Если х > x х > x3 х > 3x Х + 3X >X + 3X f(x )>f(x )y= x + 3x возрастает Оглавление

y= 4 sinx - 5 Решение: -1 < sinx < 1 -4 < 4sinx <4 -9 < 4sinx-5 < -1 E(y)=[-9;-1] Оглавление классы

1. Найдите область значений функции: 1) y = 2,5cosx – 1,5 7) y = cos²(x + π/4) + sin2x 2) y = –(sin5x)/5 8) y = –6/π arctgx + 2 3) у = 3 – 2sinx 9) y = 2/π arcsinx + 3 4) y = 2sin²x – 5 10) y = 4π – 2arccosx 5) y = 2 – cos²x 11) y = 3arcsinx + π/2 6) y = 4cos²3x – 2 12) y = 2arcsinx + 3arccosx 2. Найдите область определения функции: 1) y = arcsin4x 4) y = arccos(–3x) 2) y = arcsin(5 – 2x) 5) y = arccos(5x–4) 3) y = arcsin(x² – 3) 6) y = arccos(8 – x²) 3. Имеет ли смысл выражение: __ __ 1) arcsin(4 – 20) 2) arccos(7 – 30)?