Курс лекций по алгебре и геометрии Голодная Наталья Юрьевна.

Презентация:



Advertisements
Похожие презентации
Вычисление определителей Выполнила : Кащенко Екатерина Проверила : Тарбокова Т. В.
Advertisements

Определители. Свойства определителей.. Определителем (детерминантом) матрицы n-го порядка называется число:
Тема 2. «Определители. Способы их вычисления.» Основные понятия: Понятие определителя Вычисление определителей Свойства определителей Миноры и алгебраические.
Определитель и его свойства. Определитель квадратной матрицы есть некоторое число, которое вычисляется из элементов матрицы по определенному правилу,
Линейная алгебра Определители второго порядка Системы из двух линейных уравнений с двумя неизвестными Определители n – ого порядка Методы вычисления определителей.
§2. Определители 1. Вспомогательные определения ОПРЕДЕЛЕНИЕ. Пусть n – натуральное число. Факториалом числа n (обозначают: n!) называют произведение натуральных.
§2. Определители 1. Вспомогательные определения ОПРЕДЕЛЕНИЕ. Пусть n – натуральное число. Факториалом числа n (обозначают: n!) называют произведение натуральных.
§1 МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ 1.1 Матрицы и их свойства Матрицей размера m n называется совокупность mn чисел, расположенных в виде таблицы из m строк и n.
§2. Определители 1. Вспомогательные определения ОПРЕДЕЛЕНИЕ. Пусть n – натуральное число. Факториалом числа n (обозначают: n!) называют произведение натуральных.
{ определители 1-го, 2-го и 3-го порядков – определитель n-го порядка – миноры и алгебраические дополнения – разложение определителя по элементам строки.
Линейная алгебра Определители второго порядка Системы из двух линейных уравнений с двумя неизвестными Определители n – ого порядка Методы вычисления определителей.
Научно – практическая конференция школьников «Эврика» Научно – исследовательский проект Выполнен ученицей 10 «Б» класса СОШ 74 г. Краснодара Баевой Татьяной.
ОПРЕДЕЛИТЕЛИ МАТРИЦ. РАНГ МАТРИЦЫ. Определители.( детерминанты). (Детерминанты квадратных матриц 2-го и 3-го порядка) Для квадратных матриц существует.
ООО "РЕЗОЛЬВЕНТА"МОСКВА, НАШ ПРИНЦИП – КАЧЕСТВО! МАТЕМАТИКА.
Тема 2. «Определители. Способы их вычисления.» Основные понятия: Понятие определителяПонятие Вычисление определителей 1-го, 2-го и 3-го порядков1-го2-го3-го.
Преподаватель: Филипенко Николай Максимович доцент кафедры Высшей математики и математической физики ТПУ.
Матрицы Элементарные преобразования и действия над матрицами made by aspirin.
Тема 1 «Элементы линейной и векторной алгебры» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Понятия.
3. Формула Лапласа. 1)Минор элемента а ik Def: Если в данном определителе вычеркнуть элементы i-й строки и k-го столбца то останется определитель, имеющий.
«Определитель матрицы» Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Транксрипт:

Курс лекций по алгебре и геометрии Голодная Наталья Юрьевна

Содержание 1. Определители Элементы теории матриц 2. Элементы теории матриц 3. Системы линейных уравнений 4. Элементы векторной алгебры 5. Прямые и плоскости Кривые второго порядка 6. Кривые второго порядка 7. Комплексные числа

Определители

Рассмотрим таблицу

Числа – это элементы таблицы.

Число строк – порядок таблицы. Главная диагональ – диагональ идущая с левого верхнего угла в правый нижний. Побочная диагональ – диагональ идущая с верхнего правого угла в левый нижний.

побочная главная

Выражение называется определителем 2-го порядка.

Определители третьего порядка

Рассмотрим таблицу

Выражение вида называется определителем третьего порядка

Методы вычисления определителей третьего порядка

Правило треугольника

Три произведения элементов, стоящих на главной диагонали и в вершинах двух треугольников: берутся со знаком " ", а три произведения элементов, стоящих на побочной диагонали и в вершинах двух других треугольников: берутся со знаком " ".

Разложение по элементам какой-либо строки(столбца)

Минор Минором элемента определителя 3-го порядка называется определитель 2-го порядка, получающийся из данного определителя вычёркиванием строки и столбца, в которых расположен элемент.

Обозначение минора Минор элемента, стоящего на пересечении i-й строки и j-го столбца определителя, обозначают

Алгебраическое дополнение

Алгебраическим дополнением элемента определителя 3-го порядка называется минор этого элемента, умноженный на (-1) в степени, где

Теорема разложения Определитель 3-го порядка равен сумме произведений элементов какой-либо строки (столбца) определителя на их алгебраические дополнения.

Таким образом, имеет место шесть разложений:

Свойства определителей 1. Определитель не меняет своего значения при замене каждой строки соответствующим столбцом. 2. Определитель изменит знак,если поменять местами любые две строки или столбца.

3. Общий множитель элементов какого-либо строки (столбца) определителя можно выносить за знак определителя. 4. Определитель равен нулю, если он имеет два одинаковых столбца или две одинаковые строки. 5. Определитель равен нулю, если элементы какой-либо строки (столбца) все равны нулю.

6. Значение определителя не изменится, если к элементам строки или столбца прибавить соответствующие элементы другой строки или столбца, умноженные на одно число.

Определители высших порядков

Выражение называется определителем 4-го порядка

Метод приведения к треугольному виду Метод приведения к треугольному виду заключается в таком преобразовании данного определителя, когда все элементы его, лежащие под одной из его диагональю, становятся равными нулю.