Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 2. Тема: Таблица истинности. Основные.

Презентация:



Advertisements
Похожие презентации
Алгебра высказываний Лекция 2 2. Определение высказывания. Таблица истинности для высказываний Определение 1 Переменная А, принимающая два значения –
Advertisements

Законы Алгебры логики В алгебре логики имеются законы, которые записываются в виде соотношений. Логические законы позволяют производить равносильные (
Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 1. Тема: Высказывание. Основные логические.
Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: ДНФ. СДНФ. Цель: Определить.
Математическая логика повторение. Вопрос 1 1) Операция, соответствующая связке ИЛИ называется ………….. 2) Обозначается …… 3) Истинна тогда …… 4) Таблица.
Занятие 2 (часть 1) Логические формулы. Законы алгебры логики.
ЕГЭ Урок 9 Алгебра логики. Логическое умножение (конъюнкция) «И» A B, A&B A B истинно тогда и только тогда, когда оба высказывания A и B истинны. A B.
Основы логики Основы логики Автор: Соколов Кирилл Дата: г. Учитель: Ковалева Ю.В.
Логические законы Логические законы и правила преобразования логических выражений.
Таблица истинности составных высказываний – это таблица, которая показывает какие значения принимает составное высказывание при всех сочетаниях значений.
Алгебра логики. Логика Логика – это наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и.
ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ Сложные высказывания можно записывать в виде формул. Для этого простые логические высказывания нужно обозначить.
Алгебра логики. Логика Логика – это наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и.
ДИКТАНТ 1. Напишите таблицу истинности для операции конъюнкция 2. Напишите таблицу истинности для операции дизъюнкция 3. Напишите таблицу истинности для.
Булевы функции и алгебра логики. Двойственность булевых функций ХНУРЭ, кафедра ПО ЭВМ, Тел , Лекции 4-5 Н.В. Белоус.
Логика – это наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и опровержений, т. е. методы.
ГБПОУ «МСС УОР 2» Москомспорта Преподаватель информатики Володина М.В г.
Для определения истинности или ложности сложного логического выражения используют таблицы истинности. Количество строк напрямую зависит от количества.
Логические законы и правила преобразования логических выражений.
Таблицы истинности Употребляемые в обычной речи логические связки в алгебре логики называются логическими операциями. Логические операции описываются.
Транксрипт:

Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 2. Тема: Таблица истинности. Основные логические тождества. Цель: Определить структуру таблицы истинности, рассмотреть основные логические тождества.

2. Определение высказывания. Таблица истинности для высказываний Определение 1 Переменная А, принимающая два значения – 0 или 1, называется логической (или булевой) переменной. Обозначаться логические переменные будут заглавными латинскими буквами с индексами или без них:

Порядок действий 1)Однотипные операции выполняются в порядке их следования. Например, 2) Отрицание подразумевает скобки. 3) Конъюнкция связывает сильнее, чем дизъюнкция. Например, 4) Дизъюнкция связывает сильнее, чем импликация. Например, 5) Импликация связывает сильнее, чем эквивалентность. Например,

Примеры 1)Избавиться от лишних скобок Ответ 2)Расставить порядок действий

Определение 2 Таблица истинности для высказывания имеет вид A1A1 A2A2 …A n-1 AnAn F(A 1, A 2,…, A n-1, A n ) 00…00F(0,0,…,0,0) 00…01F(0,0,…,0,1) ……………… 11…10F(1,1,…,1,0) 11…11F(1,1,…,1,1) Если высказывание F построено из логических переменных, то будем обозначать это высказывание: Теорема Наборов длины n из 0 и 1 существует

3. Равносильные высказывания. Определение 1 Высказывания F(A 1,A 2,…,A n ) и G(A 1,A 2,…,A n ) называются равносильными (или просто равными), если для любого набора имеет место равенство: Обозначим Другими словами, два высказывания равны, если у них совпадают таблицы истинности.

Примеры Доказательство AB

Основные логические тождества Идемпотентные законы: Коммутативные законы: Ассоциативные законы: 1) 2) 3) 4) 5) 6) 7) 8)

Законы Моргана: Закон двойного отрицания: Закон противоречия: Закон исключенного третьего: 9) 10) 11) 12) 13) 14) 15) Дистрибутивные законы: Без названия: 16) 17)

Законы поглощения: Доказательство 16) 17) 18) 19)

Тождества, содержащие константы:

Вопросы: Перечислить порядок действий в высказываниях. Сколько строк содержит таблица истинности для высказывания с 5 логическими переменными?