ГЛАВА II ТЕОРИЯ БЕСКОНЕЧНЫХ МНОЖЕСТВ §1. Счетные множества. Примеры. Минимальность счетной мощности Определение 1. Множества А и В называются равномощными.

Презентация:



Advertisements
Похожие презентации
Лектор Белов В.М г. Математический анализ Раздел: Введение в анализ Тема: Бесконечно большие последовательности Предел функции (определение и свойства.
Advertisements

ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ. Множества Для любых объектов м множество этих объектов обозначается через. Следует отметить, что объект а и множество {а} -
1 1. Множества Понятие множества. Логические символы Под множеством понимают совокупность определенных и отличных друг от друга объектов, объединенных.
Предел и непрерывность функции одной переменной. Бесконечно малые функции Пусть функция определена в окрестности точки a, кроме, быть может, самой точки.
Введение в математическую логику и теорию алгоритмов Алексей Львович Семенов Лекция 16.
Лектор Янущик О.В г. Математический анализ Раздел: Введение в анализ Тема: Числовые последовательности (бесконечно большие последовательности и их.
Определения Две не пересекающиеся прямые, лежащие в одной плоскости, называются параллельными. с а с а α Прямые а и с лежат в плоскости α, причём а с,
1 Кубенский А.А. Дискретная математика Глава 1. Множества и отношения Отношения Декартово произведение множеств: A B = { (a, b) | a A, b B } B A.
Непрерывность на отрезке Непрерывность на интервале Непрерывность в точке.
Функции и отображения Отображения. N-местные функции. Понятие образов и прообразов элементов. Свойства функций: инъекция, сюръекция и биекция. Обратные.
Введение в математическую логику и теорию алгоритмов Алексей Львович Семенов Лекция 5.
ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Составила: М.П. Филиппова доцент кафедры высшей математики ИМИ СВФУ.
Глава II. Векторная алгебра. Элементы теории линейных пространств и линейных операторов Раздел математики, в котором изучаются свойства операций над векторами,
БИНАРНЫЕ ОТНОШЕНИЯ Преподаватель О.В. Козлова ГАПОУ КК«НКСЭ»
NP-полнота Основные NP-полные задачи. Задача «Независимое множество» Условие. Задан граф G=(V,E) и целое число k. Вопрос. Существует ли независимое множество.
Свойства пределов. 1. Ограниченность функции, имеющей предел. –Определение. –Функция называется ограниченной на множестве D, если –Теорема. Пример. Функция.
§ 4. Формула включений-исключений. Беспорядки. Теорема 1 (формула включений- исключений). Пусть А = А 1 А 2 … А m – конечное множество. Тогда.
Определение 1. Выражение называется числовым рядом. Числа называются первым, вторым,...,... членами ряда. называется общим членом ряда. Определение 2.
Свойства линейных операций над матрицами Свойства линейных операций над векторами.
Элементы общей алгебры Подгруппа, кольцо, поле, тело, решетка.
Транксрипт:

ГЛАВА II ТЕОРИЯ БЕСКОНЕЧНЫХ МНОЖЕСТВ §1. Счетные множества. Примеры. Минимальность счетной мощности Определение 1. Множества А и В называются равномощными (обозначим: ), если существует биекция : А В.

Теорема 2. Отношение равномощности есть отношение эквивалентности. Доказательство. Необходимо проверить три условия: рефлексивность, симметричность, транзитивность.

Рефлексивность выполняется, так как отображение I A : A A осуществляет биекцию множества А на себя, то есть. Симметричность. Пусть, то есть существует биекция, тогда существует отображение, которое также является биекцией, то есть

Транзитивность. Пусть,, то есть существуют биекции и Тогда является биекцией, причем, то есть. Транзитивность, а вместе с ней и теорема доказаны.

Примеры.1) Докажем, что то есть докажем, что любые два интервала равномощны, то есть, грубо говоря, состоят из одного и того же количества точек, независимо от их длины. Рассмотрим функцию y(0) = a, y(1) = b. Так как эта функция линейна и отлична от константы, то биективно отображает (0;1) на (a, b). Заметим, что по теореме 2 для любых открытых промежутков

2), то есть прямая равномощна открытой полупрямой. В самом деле, отображение, определяемое функцией есть не что иное, как биекция между R и.

Определение 3. Множество А называется счетным, если оно равномощно множеству натуральных чисел, то есть =. Другими словами, множество А счетно, если его элементы можно занумеровать натуральными числами, то есть представить в виде: А=

Теорема 4. Любое подмножество счетного множества или конечно или счетно (т.е. не может содержать никаких других бесконечностей).

Доказательство. Пусть А – счетное множество и В А. Перенумеруем все элементы множества А: "Передвигаясь" в перечне элементов множества А от с меньшими номерами к элементам с большими номерами, будем выбирать из этого списка элементы подмножества В:

Если какой-то элемент окажется последним в списке В, то В является конечным множеством, состоящим из к элементов: Если же для каждого элемента из В в списке А всегда найдется следующий элемент то мы получаем список (множество) который занумерован числами 1,2,3,…,k,….

Если пере обозначить то Теорема доказана.