Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 7. Тема: Размещения. Цель: Рассмотреть.

Презентация:



Advertisements
Похожие презентации
Перестановки. Перестановки Определение 1 Перестановкой из n элементов называется всякий способ нумерации этих элементов Пример 1 Дано множество. Составить.
Advertisements

Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 10. Тема: Основные принципы комбинаторики. Цель: Ознакомиться.
Комбинаторика 1. Комбинаторика Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного,
Комбинаторика Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного, множества Задачи:
Комбинаторика. Комбинаторика Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного,
Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 8. Тема: Сочетания. Цель: Разобрать формулы.
Вероятности случайных событий. Теория вероятностей математическая наука, изучающая закономерности случайных явлений.
Тема урока: «Размещения» Алгебра 9 класс «Размещения» Лучше в совершенстве выполнить небольшую часть дела, чем сделать плохо в десять раз более. Аристотель.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 2. Тема: Обратная матрица Цель: Рассмотреть понятие.
Автор: к.ф.-м.н., доцент Жанабергенова Г.К.,. 1.Размещение: Это любое упорядоченное подмножество m из элементов множества n. (Порядок расположения элементов.
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:
{ определение – правила равенства, суммы и произведения – принцип включений – исключений – обобщение правила произведения – общее правило произведения.
Для подготовки тренинга использовались материалы с сайта К.Ю. Полякова.
Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 4. Тема: Множество. Операции над множествами.
Перестановки. Задача 1. Антону, Борису и Виктору повезло, и они купили 3 билета на футбол на 1,2 и 3-е места первого ряда стадиона. Сколькими способами.
Элементы комбинаторики РАЗМЕЩЕНИЯ. Задача 1. Имеется 4 шара и 4 пустых ячейки в коробке. Сколько вариантов расположения шаров можно получить? Задача 2.
- самостоятельный раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
§ 4. Формула включений-исключений. Беспорядки. Теорема 1 (формула включений- исключений). Пусть А = А 1 А 2 … А m – конечное множество. Тогда.
КОМБИНАТОРИКА. Комбинаторика (лат. «combina») соединять, сочетать это раздел математики, который изучает, сколько различных комбинаций можно составить.
Транксрипт:

Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 7. Тема: Размещения. Цель: Рассмотреть формулы для числа размещений без повторений и с повторениями.

Размещения Определение 1 Размещением из n элементов по k называется всякая перестановка из k элементов, выбранных каким-либо способом из данных n. Пример Дано множество. Составим все 2- размещения этого множества.

Число размещений Теорема 1 Число всех размещений из n элементов по k вычисляется по формуле Доказательство. Каждое размещение можно получить с помощью k действий: 1) выбор первого элемента n способами; 2) выбор второго элемента (n-1) способами; и т. д. k) выбор k –го элемента (n-(k-1))=(n-k+1) способами. По правилу умножения число всех размещений будет n(n-1)(n-2)…(n-k+1). Теорема доказана.

Число размещений Замечание. Формулу для числа размещений можно записать в виде Действительно

Пример Абонент забыл последние 3 цифры номера телефона. Какое максимальное число номеров ему нужно перебрать, если он вспомнил, что эти последние цифры разные? Решение. Задача сводится к поиску различных перестановок 3 элементов из 10 ( так как всего цифр 10). Применим формулу для числа перестановок.

Размещения с повторениями Определение 2 Размещением с повторением из n элементов по k называется всякая перестановка из k элементов, выбранных каким-либо способом из данных n элементов возможно с повторениями. Пример Дано множество Составим 2- размещения с повторениями:

Число размещений с повторениями Теорема 2. Число k- размещений с повторениями из n элементов вычисляется по формуле Доказательство. Каждый элемент размещения можно выбрать n способами. По правилу умножения число всех размещений с повторениями равно

Пример Сколько существует номеров машин? Решение. Считаем, что в трех буквах номера машины не используются буквы «й», «ы», «ь», «ъ», тогда число перестановок букв равно. Число перестановок цифр равно. По правилу умножения получим число номеров машин

Перестановки Определение 1 Перестановкой из n элементов называется всякий способ нумерации этих элементов Пример 1 Дано множество. Составить все перестановки этого множества. Решение.

Число перестановок Теорема 1. Число всех различных перестановок из n элементов равно n! Замечание. Например, Считают, что 0!=1 читается «n факториал» и вычисляется по формуле

Число перестановок Доказательство теоремы 1. Любую перестановку из n элементов можно получить с помощью n действий: 1)выбор первого элемента n различными способами, 2)выбор второго элемента из оставшихся (n-1) элементов, т.е. (n-1) способом, 3)выбор третьего элемента (n-2) способами, …… n) выбор n-го элемента 1 способом. По правилу умножения число всех способов выполнения действий, т.е. число перестановок, равно Теорема доказана.

Перестановки Число всех перестановок обозначается Итак, Пример В команде 6 человек. Сколькими способами они могут построиться для приветствия? Решение Число способов построения равно числу перестановок 6 элементов, т.е.

Перестановки с повторениями Теорема 2 Число перестановок n – элементов, в котором есть одинаковые элементы, а именно элементов i –того типа ( ) вычисляется по формуле где Доказательство. Так как перестановки между одинаковыми элементами не изменяют вид перестановки в целом, количество перестановок всех элементов множества нужно разделить на число перестановок одинаковых элементов.

Пример Задача: Сколько слов можно составить, переставив буквы в слове «экзамен», а в слове «математика»? Решение: В слове «экзамен» все буквы различны, поэтому используем формулу для числа перестановок без повторений В слове «математика» 3 буквы «а», 2 буквы «м», 2 буквы «т», поэтому число перестановок всех букв разделим на число перестановок повторяющихся букв:

Задачи 1)Сколькими способами можно составить список из 8 учеников, если у них различные инициалы? Решение Задача сводится к подсчету числа перестановок ФИО.

Задачи 2)Сколькими способами можно составить список 8 учеников, так, чтобы два указанных ученика располагались рядом? Решение Можно считать двоих указанных учеников за один объект и считать число перестановок уже 7 объектов, т.е. Так как этих двоих можно переставлять местами друг с другом, необходимо умножить результат на 2!

Задачи 3) Сколькими способами можно разделить 11 спортсменов на 3 группы по 4, 5 и 2 человека соответственно? Решение. Сделаем карточки: четыре карточки с номером 1, пять карточек с номером 2 и две карточки с номером 3. Будем раздавать эти карточки с номерами групп спортсменам, и каждый способ раздачи будет соответствовать разбиению спортсменов на группы. Таким образом нам необходимо посчитать число перестановок 11 карточек, среди которых четыре карточки с одинаковым номером 1, пять карточек с номером 2 и две карточки с номером 3.

Задачи 4) Сколькими способами можно вызвать по очереди к доске 4 учеников из 7? Решение. Задача сводится к подсчету числа размещений из 7 элементов по 4

Задачи 5)Сколько существует четырехзначных чисел, у которых все цифры различны? Решение. В разряде единиц тысяч не может быть нуля, т.е возможны 9 вариантов цифры. В остальных трех разрядах не может быть цифры, стоящей в разряде единиц тысяч (так как все цифры должны быть различны), поэтому число вариантов вычислим по формуле размещений без повторений из 9 по 3 По правилу умножения получим

Задачи 6)Сколько существует двоичных чисел, длина которых не превосходит 10? Решение. Задача сводится к подсчету числа размещений с повторениями из двух элементов по 10

Задачи 7)В лифт 9 этажного дома зашли 7 человек. Сколькими способами они могут распределиться по этажам дома? Решение. Очевидно, что на первом этаже никому не надо выходить. Каждый из 7 человек может выбрать любой из 8 этажей, поэтому по правилу умножения получим Можно так же применить формулу для числа размещений с повторениями из 8 (этажей) по 7(на каждого человека по одному этажу)

Задачи 8)Сколько чисел, меньше можно написать с помощью цифр 2,7,0? Решение. Так как среди цифр есть 0, то, например запись 0227 соответствует числу 227, запись 0072 соответствует числу 72, а запись 007 соответствует числу 7. Таким образом, задачу можно решить, используя формулу числа размещений с повторениями

Вопросы: Является ли перестановка – размещением? Сравнить выражения А и А