8.5. ЦИКЛЫ ГАЗОТУРБИННЫХ УСТАНОВОК. Газотурбинные установки (ГТУ) имеют многие важные преимущества по сравнению с поршневыми двигателями. Газовые турбины имеют относительно небольшие габариты и малую массу, в них нет деталей с возвратно-поступательным движением, они могут выполняться с достаточно большими единичными мощностями. Газотурбинные установки (ГТУ) имеют многие важные преимущества по сравнению с поршневыми двигателями. Газовые турбины имеют относительно небольшие габариты и малую массу, в них нет деталей с возвратно-поступательным движением, они могут выполняться с достаточно большими единичными мощностями. В газовых турбинах отсутствует основной недостаток поршневых двигателей – невозможность расширения рабочего тела в цилиндре двигателя до атмосферного давления. В газовых турбинах отсутствует основной недостаток поршневых двигателей – невозможность расширения рабочего тела в цилиндре двигателя до атмосферного давления. Практическое применение нашли ГТУ со сгоранием топлива при постоянном давлении и постоянном объеме. Им соответствуют идеальные циклы с подводом теплоты в процессе при постоянном давлении и постоянном объеме. Практическое применение нашли ГТУ со сгоранием топлива при постоянном давлении и постоянном объеме. Им соответствуют идеальные циклы с подводом теплоты в процессе при постоянном давлении и постоянном объеме.
8.6. ЦИКЛЫ ГТУ С ПОДВОДОМ ТЕПЛОТЫ ПРИ ПОСТОЯННОМ ДАВЛЕНИИ Принципиальная схема ГТУ с подводом теплоты при постоянном давлении приведена на рис Рассмотрим принцип действия установки. Принципиальная схема ГТУ с подводом теплоты при постоянном давлении приведена на рис Рассмотрим принцип действия установки. В камеру сгорания (КС) через форсунки поступают воздух из осевого компрессора (ОК) и топливо из топливного насоса (ТН). Из камеры сгорания горячие газы через комбинированные сопла направляются на лопатки газовой турбины (ГТ), а затем выбрасываются в атмосферу. ЭГ – электрогенератор. В камеру сгорания (КС) через форсунки поступают воздух из осевого компрессора (ОК) и топливо из топливного насоса (ТН). Из камеры сгорания горячие газы через комбинированные сопла направляются на лопатки газовой турбины (ГТ), а затем выбрасываются в атмосферу. ЭГ – электрогенератор. Идеальный цикл ГТУ с подводом теплоты при постоянном объеме в pv– и Ts – диаграммах представлен на рис. 9.2 и 9.3. Идеальный цикл ГТУ с подводом теплоты при постоянном объеме в pv– и Ts – диаграммах представлен на рис. 9.2 и 9.3. В адиабатном процессе 1–2 происходит сжатие рабочего тела от параметров точки 1 до параметров точки 2. В изобарном процессе 2–3 к рабочему телу подводится некоторое количество теплоты q1 от верхнего источника теплоты По адиабате 3–4 рабочее тело расширяется до первоначального давления p4=pl и по изобаре 4–1 приводится к параметрам точки 1 с отводом теплоты q2 к нижнему источнику теплоты. В адиабатном процессе 1–2 происходит сжатие рабочего тела от параметров точки 1 до параметров точки 2. В изобарном процессе 2–3 к рабочему телу подводится некоторое количество теплоты q1 от верхнего источника теплоты По адиабате 3–4 рабочее тело расширяется до первоначального давления p4=pl и по изобаре 4–1 приводится к параметрам точки 1 с отводом теплоты q2 к нижнему источнику теплоты.
Характеристики цикла: Характеристики цикла: - степень повышения давления в компрессоре ; - степень повышения давления в компрессоре ; - степень изобарного расширения. - степень изобарного расширения. Количества подводимой и отводимой теплоты определяются по формулам Количества подводимой и отводимой теплоты определяются по формулам Рис Рис Рис Рис Рис Рис. 9.3.
С учетом последних соотношений формула для термического кпд будет. С учетом последних соотношений формула для термического кпд будет. Найдем выражения температур Т2, T3, Т4 через начальную температуру Т1 рабочего тела. Для адиабатного процесса 1–2 Найдем выражения температур Т2, T3, Т4 через начальную температуру Т1 рабочего тела. Для адиабатного процесса 1–2 справедливо следующее соотношение. справедливо следующее соотношение. В изобарном процессе 2–3 В изобарном процессе 2–3. В адиабатном процессе 3–4 В адиабатном процессе 3–4. Подставляя найденные значения температур в формулу для кпд, получим. Подставляя найденные значения температур в формулу для кпд, получим.
Отсюда следует, что с увеличением степени повышения давления by показателя адиабаты k, кпд ГТУ с подводом теплоты в процессе при постоянном давлении возрастает. Отсюда следует, что с увеличением степени повышения давления by показателя адиабаты k, кпд ГТУ с подводом теплоты в процессе при постоянном давлении возрастает. Однако термический кпд еще не может служить мерой экономичности установки. Эту роль выполняет эффективный кпд ГТУ Однако термический кпд еще не может служить мерой экономичности установки. Эту роль выполняет эффективный кпд ГТУ, где le– эффективная работа (полезная работа на валу двигателя с учетом внутренних и механических потерь в установке). где le– эффективная работа (полезная работа на валу двигателя с учетом внутренних и механических потерь в установке). Эффективная работа определяется как разность действительных Эффективная работа определяется как разность действительных работ расширения и сжатия, работ расширения и сжатия, где hт = 0,8–0,9 – внутренний относительный кпд газовой турбины; = 0,8–0,85 – адиабатный кпд турбокомпрессора; hp – механический кпд. где hт = 0,8–0,9 – внутренний относительный кпд газовой турбины; = 0,8–0,85 – адиабатный кпд турбокомпрессора; hp – механический кпд.
Рис Рис Кривые зависимости ht и he от Кривые зависимости ht и he от имеют следующий вид (рис. 9.4). Как видно, по мере увеличения b he сначала растет, а потом уменьшается и может упасть до нуля. Поэтому стараются так выбирать b, чтобы b b*. имеют следующий вид (рис. 9.4). Как видно, по мере увеличения b he сначала растет, а потом уменьшается и может упасть до нуля. Поэтому стараются так выбирать b, чтобы b b*.
8.7. МЕТОДЫ ПОВЫШЕНИЯ ТЕРМИЧЕСКОГО КПД ГТУ 8.7. МЕТОДЫ ПОВЫШЕНИЯ ТЕРМИЧЕСКОГО КПД ГТУ Для повышения кпд ГТУ применяют следующие методы: Для повышения кпд ГТУ применяют следующие методы: Регенерация теплоты. Регенерация теплоты. Многоступенчатое сжатие воздуха с промежуточным охлаждением. Многоступенчатое сжатие воздуха с промежуточным охлаждением. Многоступенчатое сгорание топлива. Многоступенчатое сгорание топлива. Все эти мероприятия приближают цикл ГТУ к обобщенному термодинамическому циклу Карно, состоящему из двух изотерм и двух эквидистант, который имеет наивысший кпд в заданном интервале температур, равный кпд обычного цикла Карно. В частности, применение многоступенчатого сжатия и многоступенчатого сгорания позволяет приблизить эти процессы к изотермическим (вместо адиабатных). Причем, степень приближения процессов сжатия и сгорания к изотермическим будет тем выше, чем большее число ступеней будет применено (см. рис. 9.5, 9.6). Все эти мероприятия приближают цикл ГТУ к обобщенному термодинамическому циклу Карно, состоящему из двух изотерм и двух эквидистант, который имеет наивысший кпд в заданном интервале температур, равный кпд обычного цикла Карно. В частности, применение многоступенчатого сжатия и многоступенчатого сгорания позволяет приблизить эти процессы к изотермическим (вместо адиабатных). Причем, степень приближения процессов сжатия и сгорания к изотермическим будет тем выше, чем большее число ступеней будет применено (см. рис. 9.5, 9.6). Рис Рис Рис Рис. 9.6.