Лекция 6. Нейронные сети Хопфилда и Хэмминга Среди различных конфигураций искусственных нейронных сетей (НС) встречаются такие, при классификации которых.

Презентация:



Advertisements
Похожие презентации
10. 3 Повносвязные нейронные сети со смешанным обучением Нейронная сеть Хопфилда ( Hopfield Net)
Advertisements

Ассоциативная память. Ассоциативная сеть прямого распространения. 1 X 1 Y 1 X 2 Y 2 X i Y i X n Y n 2 i n... Y j = i=1 N w ij x i, j=1,M (*)
Лекция3.4:Нейронные сети: обучение без учителя Рассмотренный в предыдущей главе алгоритм обучения нейронной сети с помощью процедуры обратного распространения.
Сеть поиска максимума (MAXNET) Сеть поиска максимума с прямыми связями – слогослойная нейронная сеть определяющая, какой из входных сигналов имеет.
© ElVisti Лекция 10 Основные сведения о нейронных сетях Дмитрий Владимирович ЛАНДЭ МЕЖДУНАРОДНЫЙ СОЛОМОНОВ УНИВЕРСИТЕТ.
Лекция 5. Нейронные сети: обучение без учителя Главная черта, делающая обучение без учителя привлекательным, – это его "самостоятельность". Процесс обучения,
Сеть поиска максимума (MAXNET) Сеть поиска максимума с прямыми связями – слогослойная нейронная сеть определяющая, какой из входных сигналов имеет.
10.2 Основные парадигмы нейронных сетей обучения без учителя Самоорганизующиеся карты признаков Кохонена (Self-organized map) Кохонена... Выходные.
Тема 10. Архитектура и алгоритмы обучения НС Основные парадигмы нейронных сетей обучения с учителем Однослойный перцептрон f f f х1.
Симплекс-метод Лекции 6, 7. Симплекс-метод с естественным базисом Симплекс –метод основан на переходе от одного опорного плана к другому, при котором.
Одно из наиболее перспективных направлений разработки принципиально новых архитектур вычислительных систем тесно связано.
10.2 Основные парадигмы нейронных сетей обучения без учителя Самоорганизующиеся карты признаков Кохонена (Self-organized map) Кохонена... Выходные.
Вероятностная НС (Probability neural network) X 1 X n... Y 1 Y m Входной слой Скрытый слой (Радиальный) Выходной слой...
Автор: студент группы С-83 Потапенко Владимир Москва 2012 г.
Нейросетевые технологии в обработке и защите данных Обработка данных искусственными нейронными сетями (ИНС). Лекция 5. Алгоритмы обучения искусственных.
Павлов А.В. Инт.Инф.Сист. Кафедра фотоники и оптоинформатики Санкт-Петербургский государственный университет информационных технологий, механики и оптики.
Система управления РТК Основная задача системы управления роботом – автоматизация деятельности человека-оператора. Составные части: Система технического.
Использование нейросимулятора при определении внешнего вида ребенка по параметрам родителей.
Лекция 7: Метод потенциальных функций Предположим, что требуется разделить два непересекающихся образа V1 и V2. Это значит, что в пространстве изображений.
Базовые логические элементы. Чтобы сконструировать устройство, мы должны знать: каким образом следует реализовать логические значения 0 и 1 в виде электрических.
Транксрипт:

Лекция 6. Нейронные сети Хопфилда и Хэмминга Среди различных конфигураций искусственных нейронных сетей (НС) встречаются такие, при классификации которых по принципу обучения, строго говоря, не подходят ни обучение с учителем, ни обучение без учителя. В таких сетях весовые коэффициенты синапсов рассчитываются только однажды перед началом функционирования сети на основе информации об обрабатываемых данных, и все обучение сети сводится именно к этому расчету. Из сетей с подобной логикой работы наиболее известны сеть Хопфилда и сеть Хэмминга, которые обычно используются для организации ассоциативной памяти.

Структурная схема сети Хопфилда приведена на Рис. 1. Она состоит из единственного слоя нейронов, число которых является одновременно числом входов и выходов сети. Каждый нейрон связан синапсами со всеми остальными нейронами, а также имеет один входной синапс, через который осуществляется ввод сигнала. Выходные сигналы, как обычно, образуются на аксонах. Рис. 1. Структурная схема сети Хопфилда.

Задача, решаемая данной сетью в качестве ассоциативной памяти, как правило, формулируется следующим образом. Известен некоторый набор двоичных сигналов (изображений, звуковых оцифровок, прочих данных, описывающих некие объекты или характеристики процессов), которые считаются образцовыми. Сеть должна уметь из произвольного неидеального сигнала, поданного на ее вход, выделить ("вспомнить" по частичной информации) соответствующий образец (если такой есть) или "дать заключение" о том, что входные данные не соответствуют ни одному из образцов.

В общем случае, любой сигнал может быть описан вектором, n – число нейронов в сети и размерность входных и выходных векторов. Каждый элемент равен либо +1, либо -1. Обозначим вектор, описывающий k-ый образец, через, а его компоненты, соответственно, –, k=0...m-1, m – число образцов. Когда сеть распознает (или "вспомнит") какой-либо образец на основе предъявленных ей данных, ее выходы будут содержать именно его, то есть, где y – вектор выходных значений сети:. В противном случае, выходной вектор не совпадет ни с одним образцовым.

На стадии инициализации сети весовые коэффициенты синапсов устанавливаются следующим образом: (1) Здесь i и j – индексы, соответственно, предсинаптического и постсинаптического нейронов; – i-ый и j-ый элементы вектора k-го образца.

Алгоритм функционирования сети следующий (p – номер итерации): 1. На входы сети подается неизвестный сигнал. Фактически его ввод осуществляется непосредственной установкой значений аксонов: (2) поэтому обозначение на схеме сети входных синапсов в явном виде носит чисто условный характер. Ноль в скобке справа от означает нулевую итерацию в цикле работы сети.

(3) и новые значения аксонов (4) где f – активационная функция в виде скачка, приведенная на Рис. 2 а. 2. Рассчитывается новое состояние нейронов Рис. 2

3. Проверка, изменились ли выходные значения аксонов за последнюю итерацию. Если да – переход к пункту 2, иначе (если выходы стабилизировались) – конец. При этом выходной вектор представляет собой образец, наилучшим образом сочетающийся с входными данными.

Нейронная сеть Хэмминга Рис. 3. Структурная схема сети Хэмминга.

Когда нет необходимости, чтобы сеть в явном виде выдавала образец, то есть достаточно, скажем, получать номер образца, ассоциативную память успешно реализует сеть Хэмминга. Данная сеть характеризуется, по сравнению с сетью Хопфилда, меньшими затратами на память и объемом вычислений, что становится очевидным из ее структуры (Рис. 3). Сеть состоит из двух слоев. Первый и второй слои имеют по m нейронов, где m – число образцов. Нейроны первого слоя имеют по n синапсов, соединенных со входами сети (образующими фиктивный нулевой слой). Нейроны второго слоя связаны между собой ингибиторными (отрицательными обратными) синаптическими связями. Единственный синапс с положительной обратной связью для каждого нейрона соединен с его же аксоном.

На стадии инициализации весовым коэффициентам первого слоя и порогу активационной функции присваиваются следующие значения: (5) (6) Здесь – i-ый элемент k-ого образца. Весовые коэффициенты тормозящих синапсов во втором слое берут равными некоторой величине 0 < e < 1/m. Синапс нейрона, связанный с его же аксоном имеет вес +1. Идея работы сети состоит в нахождении расстояния Хэмминга от тестируемого образа до всех образцов. Расстоянием Хэмминга называется число отличающихся битов в двух бинарных векторах. Сеть должна выбрать образец с минимальным расстоянием Хэмминга до неизвестного входного сигнала, в результате чего будет активизирован только один выход сети, соответствующий этому образцу.

Алгоритм функционирования сети Хэмминга следующий: 1. На входы сети подается неизвестный вектор, исходя из которого рассчитываются состояния нейронов первого слоя (верхний индекс в скобках указывает номер слоя): (7) После этого полученными значениями инициализируются значения аксонов второго слоя: (8)

2. Вычислить новые состояния нейронов второго слоя: и значения их аксонов: (9) (10) Активационная функция f имеет вид порога (рис. 2 б), причем величина F должна быть достаточно большой, чтобы любые возможные значения аргумента не приводили к насыщению. 3. Проверить, изменились ли выходы нейронов второго слоя за последнюю итерацию. Если да – перейди к шагу 2. Иначе – конец.