Сочетания Сочетания Определение 1 Сочетанием из n элементов по k называется всякая совокупность попарно различных k элементов, выбранных каким-либо способом.

Презентация:



Advertisements
Похожие презентации
Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 8. Тема: Сочетания. Цель: Разобрать формулы.
Advertisements

Комбинаторика. Сочетания Определение 1 k-сочетанием множества А называется неупорядоченный набор попарноразличных элементов множества А длины k. Другими.
Вероятности случайных событий. Теория вероятностей математическая наука, изучающая закономерности случайных явлений.
ТЕОРИЯ КОНЕЧНЫХ МНОЖЕСТВ (КОМБИНАТОРИКА) §1. Принципы сложения и умножения Комбинаторика занимается подсчетом количеств разных комбинаций, которые можно.
§ 4. Формула включений-исключений. Беспорядки. Теорема 1 (формула включений- исключений). Пусть А = А 1 А 2 … А m – конечное множество. Тогда.
УРОК 4. Элементы комбинаторики.. Задачи на непосредственный подсчет вероятностей Комбинаторика изучает количество комбинаций (подчиненное определенным.
Автор: к.ф.-м.н., доцент Жанабергенова Г.К.,. 1.Размещение: Это любое упорядоченное подмножество m из элементов множества n. (Порядок расположения элементов.
Комбинаторика 1. Комбинаторика Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного,
Перестановки При составлении размещений без повторений из n элементов по к мы получили расстановки, отличающиеся друг от друга и составом, и порядком элементов.
Комбинаторика Размещение и сочитание. Размещение В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что.
{ определение – правила равенства, суммы и произведения – принцип включений – исключений – обобщение правила произведения – общее правило произведения.
Комбинаторика Комбинаторный анализ. Определение Комбинаторика раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения.
Определение вероятности случайного события. Элементы комбинаторики: Перестановки; Размещения; Сочетания.
Перестановки. Перестановки Определение 1 Перестановкой из n элементов называется всякий способ нумерации этих элементов Пример 1 Дано множество. Составить.
Комбинаторика. Определение множества Множество есть совокупность объединенных по некоторым признакам различных объектов, называемых элементами множества.
Элементы комбинаторики Сочетания. Вопрос дня: КАК РАЗЛИЧАТЬ ПРИМЕНЕНИЕ ТЕОРЕМ?
Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 7. Тема: Размещения. Цель: Рассмотреть.
B C C1C1 a b c O A B C C1C1 a b c O A Доказательство : 1. По следствию к теореме синусов: =>=>
Сочетания и их свойства. А-11. Определение: Сочетаниями из m элементов по n элементов в каждом (nm) называются соединения, каждое из которых содержит.
Комбинаторика Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного, множества Задачи:
Транксрипт:

Сочетания

Сочетания Определение 1 Сочетанием из n элементов по k называется всякая совокупность попарно различных k элементов, выбранных каким-либо способом из данных n элементов. Другими словами k-сочетание – это k- элементное подмножество n элементного множества. Пример. Дано множество. Составим 2- сочетания:

Сочетания Теорема 1 Число k- сочетаний n-элементного множества вычисляется по формуле Доказательство. Из каждого k-сочетания, переставляя его элементы всевозможными способами, получим k! размещений. Значит, Отсюда

Пример Сколькими способами можно выбрать 3 плитки шоколада из имеющихся 5 плиток? Решение. Задача сводится к вычислению числа сочетаний из 5 по 3

Свойства сочетаний 1) Доказательство: 2) Доказательство:

Свойства сочетаний 3) Доказательство: 4) Доказательство:

Бином Ньютона

Следствия из бинома Ньютона получается из бинома Ньютона при 1)Равенство 2) Равенство

Сочетания с повторениями

Сочетание с повторениями Определение 1 Сочетанием из n элементов по k называется всякая совокупность k элементов, выбранных каким-либо способом из данных n элементов. Пример: Дано множество А=. Составим 2- сочетания с повторениями:

Число сочетаний с повторениями Теорема 1. Число k-сочетание с повторениями n – элементного множества вычисляется по формуле

Пример В магазине продаются пирожные 4 сортов. Сколькими способами можно купить 7 пирожных? Решение. Используем формулу числа сочетаний с повторениями, так как покупка будет содержать пирожные повторяющихся сортов.

Порядок важен Порядок не важен С повторениями Без повторений Сводная таблица