Динамика материальной точки. Законы Ньютона Динамика – раздел механики, в котором рассматриваются основные законы, определяющие движение тел. Классическая.

Презентация:



Advertisements
Похожие презентации
Законы Ньютона. Первый закон Ньютона Второй закон Ньютона Третий закон Ньютона.
Advertisements

Законы Ньютона. Первый закон Ньютона Второй закон Ньютона Третий закон Ньютона.
ЗАКОНЫ НЬЮТОНА. Первый закон Ньютона Второй закон Ньютона Третий закон Ньютона.
Три закона Ньютона Выполнил: Ученик 9В класса Гимназия 122 Кузьмичев Андрей.
ЗАКОНЫ НЬЮТОНА. Законы Ньютона Первый закон Ньютона Первый закон Ньютона Второй закон Ньютона Второй закон Ньютона Третий закон Ньютона Третий закон Ньютона.
Презентация на тему «Законы Ньютона» учитель физики Шуваева И.П.
Механика вращательного движения Пусть - проведенный из неподвижной в некоторой инерциальной системе отсчета точки О радиус-вектор материальной точки, к.
ЛЕКЦИЯ 2 Динамика материальной точки. План лекции. 1. Первый закон Ньютона, Инерциальные системы отсчета. 2. Сила и масса, плотность, вес, тело ой.
Основная задача механики определить координату и скорость тела в любой момент времени по известным начальным координате и скорости.
Законы Ньютона Выполнила: Гарданова Эльвира Ученица 11 класса А.
ЗАКОНЫ НЬЮТОНА Ильинская средняя школа 26. Учитель – Барышкина Людмила Анатольевна 1.
Основные понятия и законы динамики. Uchim.net. Галилео Галилей ( ) На основе экспериментальных исследований движения шаров по наклонной плоскости.
ДИНАМИКА. Сила. Принцип суперпозиции сил Масса, плотность Законы динамики : первый закон Ньютона. Инерциальные системы отсчета Законы динамики : второй.
Законы Ньютона Подготовил Диль Виталий ИС-14 С. Законы Ньютона Первый закон Ньютона Второй закон Ньютона Третий закон Ньютона.
Законы Ньютона законы классической механики, позволяющие записать уравнения движения для любой механической системы. Автор: Анищенко Е.С., 10 класс, СОШ.
Динамика ( греч. δύναμις сила ) раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями,
ГОУ НПО ПУ 31 Автор: Анисимова Т.В. г. Гурьевск, 2010.
ОСНОВНЫЕ ВИДЫ СИЛ В МЕХАНИКЕ. РАБОТУ ВЫПОЛНИЛА ПИСКУНОВА МАРИЯ. ГРУППА 113.
Законы Ньютона Принцип относительности Галилея Центр масс (центр инерции) ДИНАМИКА материальной точки.
Три закона, лежащие в основе классической механики.
Транксрипт:

Динамика материальной точки. Законы Ньютона Динамика – раздел механики, в котором рассматриваются основные законы, определяющие движение тел. Классическая динамика базируется на трех законах Ньютона, которые следует рассматривать не как изолированные утверждения, а как систему взаимосвязанных постулатов. Эти законы, хотя они и не являются логическим следствием опытных фактов, тем не менее можно рассматривать как обобщение данных многочисленных наблюдений за движением макроскопических тел. Динамика – раздел механики, в котором рассматриваются основные законы, определяющие движение тел. Классическая динамика базируется на трех законах Ньютона, которые следует рассматривать не как изолированные утверждения, а как систему взаимосвязанных постулатов. Эти законы, хотя они и не являются логическим следствием опытных фактов, тем не менее можно рассматривать как обобщение данных многочисленных наблюдений за движением макроскопических тел.

Движение свободных тел определяет первый закон Ньютона: Существуют системы отсчета, относительно которых движение всех свободных тел является равномерным и прямолинейным. Такие системы отсчета называются инерциальными. Подчеркнем, что речь идет о системах отсчета, относительно которых все свободные тела движутся равномерно и прямолинейно. Для одного данного тела независимо от того, является оно свободным или нет, всегда можно указать систему отсчета, относительно которой оно движется равномерно и прямолинейно, например систему, связанную с самим этим телом. Но существование системы отсчета, относительно которой прямолинейно и равномерно движение нескольких различных тел отнюдь не является в общем случае обязательным. Движение свободных тел определяет первый закон Ньютона: Существуют системы отсчета, относительно которых движение всех свободных тел является равномерным и прямолинейным. Такие системы отсчета называются инерциальными. Подчеркнем, что речь идет о системах отсчета, относительно которых все свободные тела движутся равномерно и прямолинейно. Для одного данного тела независимо от того, является оно свободным или нет, всегда можно указать систему отсчета, относительно которой оно движется равномерно и прямолинейно, например систему, связанную с самим этим телом. Но существование системы отсчета, относительно которой прямолинейно и равномерно движение нескольких различных тел отнюдь не является в общем случае обязательным.

Если тело не является свободным, его движение определяется воздействием на тело других тел и создаваемых ими полей. В ньютоновской механике принимается, что количественно такое воздействие может быть описано с помощью векторной величины, которая называется силой. Природа и происхождение сил в механике не изучается, это задача физики в целом. Если тело не является свободным, его движение определяется воздействием на тело других тел и создаваемых ими полей. В ньютоновской механике принимается, что количественно такое воздействие может быть описано с помощью векторной величины, которая называется силой. Природа и происхождение сил в механике не изучается, это задача физики в целом.

В настоящее время известны четыре основных вида сил – гравитационные, электромагнитные, сильные и слабые. Два последних вида сил (сильные и слабые) действуют между атомными ядрами и элементарными частицами и проявляются только на очень коротких расстояниях. Гравитационные силы описываются в рамках классической механики законом всемирного притяжения: два любых тела (материальные точки) притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними: В настоящее время известны четыре основных вида сил – гравитационные, электромагнитные, сильные и слабые. Два последних вида сил (сильные и слабые) действуют между атомными ядрами и элементарными частицами и проявляются только на очень коротких расстояниях. Гравитационные силы описываются в рамках классической механики законом всемирного притяжения: два любых тела (материальные точки) притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними: (1.16) (1.16) (Сила гравитационного притяжения направлена по прямой, соединяющей материальные точки.) (Сила гравитационного притяжения направлена по прямой, соединяющей материальные точки.)

Движение тела под действием силы определяется вторым законом Ньютона: в инерциальной системе отсчета ускорение тела прямо пропорционально приложенной силе: Движение тела под действием силы определяется вторым законом Ньютона: в инерциальной системе отсчета ускорение тела прямо пропорционально приложенной силе:. (1.17). (1.17) Так как сила и ускорение векторные величины, из второго закона Ньютона в частности следует, что направление ускорения совпадает с направлением силы. Коэффициент пропорциональности в (1.17) (он ставится в этой формуле перед ускорением) есть характеристика тела, которая называется инертной массой или просто массой тела, т.е.: Так как сила и ускорение векторные величины, из второго закона Ньютона в частности следует, что направление ускорения совпадает с направлением силы. Коэффициент пропорциональности в (1.17) (он ставится в этой формуле перед ускорением) есть характеристика тела, которая называется инертной массой или просто массой тела, т.е.:.

В системе СИ масса измеряется в килограммах (кг), а сила в ньютонах (Н) (1 Н=1 кг·м/с 2). Поскольку ускорение тела есть производная по времени от его скорости, а массу как постоянный коэффициент можно внести под знак производной, можно записать второй закон Ньютона в виде В системе СИ масса измеряется в килограммах (кг), а сила в ньютонах (Н) (1 Н=1 кг·м/с 2). Поскольку ускорение тела есть производная по времени от его скорости, а массу как постоянный коэффициент можно внести под знак производной, можно записать второй закон Ньютона в виде (1.19) (1.19) Или, вводя векторную величину Или, вводя векторную величину (1.20) (1.20) называемую импульсом тела, в виде называемую импульсом тела, в виде

При расчете силы действующей на тело часто используется принцип независимости действия сил. Суть его в следующем. Предположим, есть n источников силы (тел или силовых полей), каждый из которых действует на рассматриваемую материальную точку с силой, i = 1,2, … n, когда все остальные источники удалены. Тогда, как показывает опыт, в большинстве случаев сила, действующая на тело, когда все n источников действуют одновременно, равна геометрической (векторной) сумме сил : При расчете силы действующей на тело часто используется принцип независимости действия сил. Суть его в следующем. Предположим, есть n источников силы (тел или силовых полей), каждый из которых действует на рассматриваемую материальную точку с силой, i = 1,2, … n, когда все остальные источники удалены. Тогда, как показывает опыт, в большинстве случаев сила, действующая на тело, когда все n источников действуют одновременно, равна геометрической (векторной) сумме сил :.

Пусть - сила, действующая на одну материальную точку со стороны второй материальной точки, а - сила, действующая на вторую точку со стороны первой. Тогда Пусть - сила, действующая на одну материальную точку со стороны второй материальной точки, а - сила, действующая на вторую точку со стороны первой. Тогда (1.23) (1.23) Это утверждение является третьим законом Ньютона: тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по абсолютному значению и противоположными по направлению. Это утверждение является третьим законом Ньютона: тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по абсолютному значению и противоположными по направлению.

Используя законы Ньютона можно по заданному движению тела найти действующую на него силу. Для этого нужно записать закон движения тела в инерциальной системе отсчета, вычислить ускорение и из второго закона Ньютона (1.18) определить действующую силу. Более сложной является задача другого типа – по заданной силе определить движение тела. Используя законы Ньютона можно по заданному движению тела найти действующую на него силу. Для этого нужно записать закон движения тела в инерциальной системе отсчета, вычислить ускорение и из второго закона Ньютона (1.18) определить действующую силу. Более сложной является задача другого типа – по заданной силе определить движение тела.

Если тело находится в равновесии (неподвижно) относительно некоторой инерциальной системы отсчета, то его скорость, а значит и ускорение равны нулю. Согласно второму закону Ньютона это может быть только тогда, когда равнодействующая всех приложенных к телу сил равна нулю. Таким образом, мы получаем необходимое условие равновесия: если тело находится в равновесии, то геометрическая сумма всех приложенных к телу сил равна нулю. Это условие позволяет решать некоторые задачи статики. Если тело находится в равновесии (неподвижно) относительно некоторой инерциальной системы отсчета, то его скорость, а значит и ускорение равны нулю. Согласно второму закону Ньютона это может быть только тогда, когда равнодействующая всех приложенных к телу сил равна нулю. Таким образом, мы получаем необходимое условие равновесия: если тело находится в равновесии, то геометрическая сумма всех приложенных к телу сил равна нулю. Это условие позволяет решать некоторые задачи статики.