Работа и энергия Работой силы на перемещении называется проекция этой силы на направление перемещения, умноженная на величину перемещения:Рис. 9α, (1.28)

Презентация:



Advertisements
Похожие презентации
Законы сохранения План лекции 1.Импульс тела. 2.Энергия.
Advertisements

Закон сохранения энергии Ничто из того, что есть, не может быть уничтожено. Всякое изменение есть только соединение и разделение частей». Демокрит.
4. Работа и энергия Энергия является количественной мерой различных форм движения и взаимодействий всех видов материи. Слово энергия происходит от греческого.
Механическая работа Полная механическая энергия Законы изменения и сохранения механической энергии.
Законы Сохранения в Механике. Содержание: 1. Закон Сохранения Импульса Закон Сохранения Импульса Закон Сохранения Импульса 2. Закон Сохранения Механической.
Тема 5. Законы сохранения в нерелятивистской механике. Система материальных точек 5.1. Консервативные силы. Потенциальная энергия.
Механика вращательного движения Пусть - проведенный из неподвижной в некоторой инерциальной системе отсчета точки О радиус-вектор материальной точки, к.
Лекция 1 Основы механики материальной точки и абсолютно твердого тела.
МЕХАНИЧЕСКАЯ РАБОТА И ЭНЕРГИЯ. МЕХАНИЧЕСКАЯ РАБОТА Работа - физическая величина, характеризующая процесс превращения одной формы движения в другую. Работа.
11. Основы термодинамики 11.1 Первое начало термодинамики При термодинамическом описании свойств макросистем используют закономерности, наблюдающиеся в.
Работа и энергия.
ЗДРАВСТВУЙТЕ !. Лекция 9. ЭНЕРГИЯ. РАБОТА. МОЩНОСТЬ 6.1. Работа постоянной и Работа постоянной и переменной силы 6.2. Кинетическая энергия Кинетическая.
Лекции по физике. Механика Законы сохранения. Энергия, импульс и момент импульса механической системы. Условия равновесия.
Работа, энергия и мощность.. Работа. Многие думают, что работа – это изнурительный труд, за который платят мало или очень мало денег. Но физики утверждают,
Механическая энергия. Учитель физики МБОУ СОШ 6 Золотых Д.Д.
Рассмотрим замкнутую систему из N взаимодействующих друг с другом частиц, на которые не действуют внешние силы. Состояние такой системы определяется заданием.
Твердое тело – это система материальных точек, расстояния между которыми не меняются в процессе движения. При вращательном движении твердого тела все его.
9.8 Релятивистская динамика Принцип относительности Эйнштейна требует, чтобы все законы природы имели один и тот же вид во всех инерциальных системах отсчета.
Презентацию подготовила ученица 10 «Б» класса Ткачёнок Анастасия.
Энергия Равна работе, которую может совершить тело или система тел при переходе из данного состояния на нулевой уровень.
Транксрипт:

Работа и энергия Работой силы на перемещении называется проекция этой силы на направление перемещения, умноженная на величину перемещения:Рис. 9α, (1.28) Работой силы на перемещении называется проекция этой силы на направление перемещения, умноженная на величину перемещения:Рис. 9α, (1.28) где α – угол между векторами силы и перемещения (рис. 9). Величина в (1.28) предполагается бесконечно малой, поэтому называется также элементарной работой. где α – угол между векторами силы и перемещения (рис. 9). Величина в (1.28) предполагается бесконечно малой, поэтому называется также элементарной работой.

При конечном перемещении точки вдоль некоторой кривой L работа определяется следующим образом. Траектория разбивается на бесконечно малые элементы, на каждом из которых вычисляется элементарная работа по формуле (1.28), а затем все элементарные работы складываются. Эта сумма в пределе, когда длины элементарных перемещений стремятся к нулю, а их число к бесконечности есть по определению работа силы вдоль кривой L. В математике такой предел называется криволинейным интегралом вектора вдоль кривой L. Таким образом: При конечном перемещении точки вдоль некоторой кривой L работа определяется следующим образом. Траектория разбивается на бесконечно малые элементы, на каждом из которых вычисляется элементарная работа по формуле (1.28), а затем все элементарные работы складываются. Эта сумма в пределе, когда длины элементарных перемещений стремятся к нулю, а их число к бесконечности есть по определению работа силы вдоль кривой L. В математике такой предел называется криволинейным интегралом вектора вдоль кривой L. Таким образом: (1.29) (1.29)

Единицей работы в СИ является джоуль (Дж) (1 Дж = 1 Н·м). Работа, совершенная за небольшой промежуток времени и отнесенная к этому промежутку называется мощностью: Единицей работы в СИ является джоуль (Дж) (1 Дж = 1 Н·м). Работа, совершенная за небольшой промежуток времени и отнесенная к этому промежутку называется мощностью:. (1.30). (1.30) Она измеряется в системе СИ в ваттах (Вт) (1 Вт = 1 Дж/с). Она измеряется в системе СИ в ваттах (Вт) (1 Вт = 1 Дж/с).

Используя второй закон Ньютона в виде, равенство и соотношение, которое получается при дифференцировании тождества, получим из (1.29): Используя второй закон Ньютона в виде, равенство и соотношение, которое получается при дифференцировании тождества, получим из (1.29):. (1.31). (1.31) Величина Величина (1.32) (1.32) называется кинетической энергией материальной точки. Используя это определение можно записать (1.31) в виде: называется кинетической энергией материальной точки. Используя это определение можно записать (1.31) в виде:, (1.33)αz1- z2z2z Рис. 10z1, (1.33)αz1- z2z2z Рис. 10z1 т.е. работа силы при перемещении материальной точки равна приращению кинетической энергии этой точки. т.е. работа силы при перемещении материальной точки равна приращению кинетической энергии этой точки.

Этот результат очевидно обобщается на случай произвольной механической системы. Написав соотношения (1.33) для всех точек системы, а затем сложив эти соотношения, получим, что работа всех сил, действующих на механическую систему, равна приращению кинетической энергии системы. Отметим, что в отличие от полного импульса, приращение которого определяется только внешними силами, действующими на систему (1.26), приращение кинетической энергии определяется работой не только внешних, но и внутренних сил. Этот результат очевидно обобщается на случай произвольной механической системы. Написав соотношения (1.33) для всех точек системы, а затем сложив эти соотношения, получим, что работа всех сил, действующих на механическую систему, равна приращению кинетической энергии системы. Отметим, что в отличие от полного импульса, приращение которого определяется только внешними силами, действующими на систему (1.26), приращение кинетической энергии определяется работой не только внешних, но и внутренних сил.

Рассмотрим работу постоянной по величине и направлению силы, например, силы тяжести (рис. 10). Элементарная работа на перемещении : Рассмотрим работу постоянной по величине и направлению силы, например, силы тяжести (рис. 10). Элементарная работа на перемещении :, (1.34), (1.34) где z1 и z2 – высоты (вертикальные координаты) начальной и конечной точек пути где z1 и z2 – высоты (вертикальные координаты) начальной и конечной точек пути

Разбивая теперь перемещение вдоль произвольной кривой на элементарные участки, применяя к каждому формулу (1.34) и складывая элементарные работы, получим, что работа силы тяжести (как и любой постоянной силы) не зависит от формы пути, а определяется только начальным и конечным положением перемещающейся точки. Можно показать, что аналогичным свойством обладает и любая центральная сила. (Т. е. сила, направленная всюду к одной и той же точке и зависящая только от расстояния от этой точки.) Разбивая теперь перемещение вдоль произвольной кривой на элементарные участки, применяя к каждому формулу (1.34) и складывая элементарные работы, получим, что работа силы тяжести (как и любой постоянной силы) не зависит от формы пути, а определяется только начальным и конечным положением перемещающейся точки. Можно показать, что аналогичным свойством обладает и любая центральная сила. (Т. е. сила, направленная всюду к одной и той же точке и зависящая только от расстояния от этой точки.)

Вообще, силы для которых работа не зависит от пути, вдоль которого происходит перемещение точки, а определяется только начальным и конечным ее положениями называются консервативными или потенциальными. Соответственно, силы, для которых работа зависит от пути, называются неконсервативными или диссипативными. Вообще, силы для которых работа не зависит от пути, вдоль которого происходит перемещение точки, а определяется только начальным и конечным ее положениями называются консервативными или потенциальными. Соответственно, силы, для которых работа зависит от пути, называются неконсервативными или диссипативными.

Работа любой консервативной силы вдоль пути от точки до точки может быть представлена в виде Работа любой консервативной силы вдоль пути от точки до точки может быть представлена в виде (1.34) (1.34) где - некоторая функция положения точки. Эта функция называется потенциальной энергией материальной точки. То есть, работа консервативной силы равна убыли потенциальной энергии точки. Объединяя этот результат с (1.33), получим: где - некоторая функция положения точки. Эта функция называется потенциальной энергией материальной точки. То есть, работа консервативной силы равна убыли потенциальной энергии точки. Объединяя этот результат с (1.33), получим: или. или. Сумма кинетической и потенциальной энергии называется полной энергией точки: Сумма кинетической и потенциальной энергии называется полной энергией точки:. Таким образом,, или Таким образом,, или (1.35) (1.35)

Закон сохранения (1.35) можно обобщить на случай произвольной механической системы. Если внутренние и внешние силы в системе консервативны, их работа определяется только начальной и конечной конфигурациями механической системы. В этом случае можно ввести (аналогично (1.34)) потенциальную энергию, зависящую только от радиус-векторов точек механической системы и из (1.33) получить закон сохранения энергии в механике: Закон сохранения (1.35) можно обобщить на случай произвольной механической системы. Если внутренние и внешние силы в системе консервативны, их работа определяется только начальной и конечной конфигурациями механической системы. В этом случае можно ввести (аналогично (1.34)) потенциальную энергию, зависящую только от радиус-векторов точек механической системы и из (1.33) получить закон сохранения энергии в механике:, (1.36), (1.36) т. е. в системе тел, между которыми действуют только консервативные силы, полная энергия не изменяется со временем. т. е. в системе тел, между которыми действуют только консервативные силы, полная энергия не изменяется со временем.

Если в системе действуют диссипативные силы, такие как, например, силы трения, ее полная энергия не сохраняется. Однако опыт показывает, что всякий раз, когда изменяется полная энергия, в системе происходят какие-то внутренние изменения. Например, выделяется или поглощается тепло, звуковые или электромагнитные волны. Оказывается, со всеми известными на сегодня процессами можно связать «виды» или «формы» энергии – дополнительные слагаемые в (1.36), с учетом которых это равенство оказывается верным в любой ситуации. В этом заключается универсальный, общефизический закон сохранения энергии – энергия не исчезает и не появляется, она только переходит из одного вида в другой. Если в системе действуют диссипативные силы, такие как, например, силы трения, ее полная энергия не сохраняется. Однако опыт показывает, что всякий раз, когда изменяется полная энергия, в системе происходят какие-то внутренние изменения. Например, выделяется или поглощается тепло, звуковые или электромагнитные волны. Оказывается, со всеми известными на сегодня процессами можно связать «виды» или «формы» энергии – дополнительные слагаемые в (1.36), с учетом которых это равенство оказывается верным в любой ситуации. В этом заключается универсальный, общефизический закон сохранения энергии – энергия не исчезает и не появляется, она только переходит из одного вида в другой.