Кинетическая теория газов Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем размеры самих молекул, а силы.

Презентация:



Advertisements
Похожие презентации
Идеальный газ Давление газа Средняя кинетическая энергия поступательного движения молекул Концентрация молекул.
Advertisements

Основное уравнение мкт. Основное уравнение молекулярно - кинетической теории.
Адиабатический процесс. Уравнение адиабаты При выводе основного уравнения молекулярно- кинетической теории идеальных газов (2.4) мы предполагали, что столкновения.
Идеальный газ. Основное уравнение МКТ Часть 2. Обычно в основе построения любой теории лежит метод моделей – вместо реального физического объекта или.
Температура. Уравнение состояния Примем в качестве постулата, что в состоянии хаотического движения молекул газа имеет место закон равнораспределения энергии.
Идеальный газ. Параметры состояния газа Древние считали газ неуловимой формой тела, представляющего собой нечто среднее между веществом и духом. Новые.
Молекулярная физика. Основы мкт Молекулярно-кинетическая теория Масса и размеры молекул Количество вещества Строение газов, жидкостей и твердых тел Идеальный.
Лекция 7 Молекулярная физика и термодинамика. Тепловое равновесие. Температура. Молекулярная физика и термодинамика изучают свойства и поведение макроскопических.
Идеальный газ. Основное уравнение МКТ. Дубовицкая Анна 10 «Б»
Основное уравнение молекулярно-кинетической теории и следствия из него
Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура.
Механика вращательного движения Пусть - проведенный из неподвижной в некоторой инерциальной системе отсчета точки О радиус-вектор материальной точки, к.
Идеальный газ в МКТ. Основное ур-ние МКТ газов Среднее значение квадрата скорости молекул.
Урок 3 Основное уравнение МКТ. Цель урока: Установить взаимосвязь между макроскопическими и микроскопическими параметрами Научиться решать вычислительные.
Уравнение состояния идеального газа Уравнение состояния идеального газа.
Газы и их свойства. Что же такое газы? Что же такое газы? Что бы ответить на этот вопрос, надо Что бы ответить на этот вопрос, надо изучить свойства газа.
Уравнение состояния идеального газа Уравнение состояния идеального газа Учитель физики: Мурнаева Екатерина Александровна.
Презентация к уроку по физике (10 класс) по теме: Презентация по физике 10 класс. Тема "Идеальный газ в МКТ. Основное уравнение МКТ"
Закон сохранения импульса Из законов Ньютона можно получить некоторые общие следствия применительно к движению системы тел. Механической системой тел называется.
Идеальный газ в МКТ. ИДЕАЛЬНЫЙ ГАЗ Известно, что частицы в газах, в отличие от жидкостей и твердых тел, располагаются друг относительно друга на расстояниях,
Транксрипт:

Кинетическая теория газов Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем размеры самих молекул, а силы взаимодействия между молекулами достаточно быстро убывают с расстоянием. Поэтому, в статистической физике пользуются моделью идеального газа, которая предполагает следующие приближения. Предполагается, что суммарным объемом молекул можно пренебречь по сравнению с объемом сосуда, в котором находится газ. Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем размеры самих молекул, а силы взаимодействия между молекулами достаточно быстро убывают с расстоянием. Поэтому, в статистической физике пользуются моделью идеального газа, которая предполагает следующие приближения. Предполагается, что суммарным объемом молекул можно пренебречь по сравнению с объемом сосуда, в котором находится газ.

Кроме того, предполагается, что между молекулами отсутствуют дальнодействующие силы взаимодействия, взаимодействие между молекулами проявляется только в момент столкновений, которые считаются абсолютно упругими. Модель идеального газа достаточно хорошо описывает поведение газовых сред при низких давлениях и высоких температурах, в области же высоких давлений и низких температур используются другие, более точные модели. Кроме того, предполагается, что между молекулами отсутствуют дальнодействующие силы взаимодействия, взаимодействие между молекулами проявляется только в момент столкновений, которые считаются абсолютно упругими. Модель идеального газа достаточно хорошо описывает поведение газовых сред при низких давлениях и высоких температурах, в области же высоких давлений и низких температур используются другие, более точные модели.

Вычислим, в рамках модели идеального газа, давление, оказываемое газом на стенки сосуда. Определим давление как величину, равную отношению силы, действующей со стороны газа на стенку площадью к этой площади: Вычислим, в рамках модели идеального газа, давление, оказываемое газом на стенки сосуда. Определим давление как величину, равную отношению силы, действующей со стороны газа на стенку площадью к этой площади:. (2.1)vx·τdx Рис. 13SPS. (2.1)vx·τdx Рис. 13SPS Единицей измерения давления в системе СИ является паскаль (Па) – 1 Па = 1 Н/м 2. Единицей измерения давления в системе СИ является паскаль (Па) – 1 Па = 1 Н/м 2.

С точки зрения молекулярно-кинетической теории давление – результат большого числа ударов молекул газа о стенки сосуда. Пусть в сосуде с объемом находится молекул. Будем считать удары молекул о стенку упругими. Тогда компонента импульса молекулы в направлении «вдоль стенки» не изменяется при ударе, а в направлении перпендикулярном стенке изменяется на противоположную. Таким образом, каждая молекула при ударе передает стенке импульс, если обозначить через х направление перпендикулярное стенке. С точки зрения молекулярно-кинетической теории давление – результат большого числа ударов молекул газа о стенки сосуда. Пусть в сосуде с объемом находится молекул. Будем считать удары молекул о стенку упругими. Тогда компонента импульса молекулы в направлении «вдоль стенки» не изменяется при ударе, а в направлении перпендикулярном стенке изменяется на противоположную. Таким образом, каждая молекула при ударе передает стенке импульс, если обозначить через х направление перпендикулярное стенке.

Найдем теперь число ударов молекул о стенку за время. Очевидно, что за время о стенку могут удариться только те молекулы, которые находятся от нее на расстоянии не превышающем (рис.13). Эти молекулы занимают объем, и если считать, что к стенке и от нее движется одинаковое число молекул, то количество ударившихся о стенку молекул равно половине полного количества молекул в этом объеме. Значит суммарный импульс, который молекулы передают стенке за время, равен: Найдем теперь число ударов молекул о стенку за время. Очевидно, что за время о стенку могут удариться только те молекулы, которые находятся от нее на расстоянии не превышающем (рис.13). Эти молекулы занимают объем, и если считать, что к стенке и от нее движется одинаковое число молекул, то количество ударившихся о стенку молекул равно половине полного количества молекул в этом объеме. Значит суммарный импульс, который молекулы передают стенке за время, равен:

Сила, действующая на стенку равна импульсу, переданному стенке за единицу времени. Значит, давление Сила, действующая на стенку равна импульсу, переданному стенке за единицу времени. Значит, давление. (2.2). (2.2) Теперь надо учесть, что не все молекулы движутся с одинаковыми скоростями. Поэтому произведение в (2.2) нужно заменить средним произведением, усредненным по всем молекулам: Теперь надо учесть, что не все молекулы движутся с одинаковыми скоростями. Поэтому произведение в (2.2) нужно заменить средним произведением, усредненным по всем молекулам:. (2.3). (2.3)

Рассмотрим скалярное произведение. Поскольку «х – направление» ничем не выделено,. Подставляя это значение в (2.3), получим: Рассмотрим скалярное произведение. Поскольку «х – направление» ничем не выделено,. Подставляя это значение в (2.3), получим:. (2.4). (2.4) Импульс молекулы, значит. С учетом этого (2.4) можно переписать в виде: Импульс молекулы, значит. С учетом этого (2.4) можно переписать в виде:. (2.5). (2.5) Это выражение (в виде (2.5), или в более общем виде (2.4)) называется основным уравнением молекулярно-кинетической теории идеальных газов. Это выражение (в виде (2.5), или в более общем виде (2.4)) называется основным уравнением молекулярно-кинетической теории идеальных газов.

Если теперь учесть, что величина представляет собой среднюю кинетическую энергию поступательного движения молекулы газа, а - это полная кинетическая энергия поступательного движения всех молекул, то Если теперь учесть, что величина представляет собой среднюю кинетическую энергию поступательного движения молекулы газа, а - это полная кинетическая энергия поступательного движения всех молекул, то или. или.

Определим полную внутреннюю энергию газа как суммарную энергию движения всех атомов газа. (При этом мы не берем в расчет энергию движения газа как целого и энергию его во внешних полях, например в поле тяжести.) Полная внутренняя энергия в общем случае не совпадает с - полной кинетической энергией поступательного движения молекул, так как газ может состоять из сложных молекул, в которых могут быть внутренние движения – вращения, колебания и т.д., поэтому в общем случае. Определим полную внутреннюю энергию газа как суммарную энергию движения всех атомов газа. (При этом мы не берем в расчет энергию движения газа как целого и энергию его во внешних полях, например в поле тяжести.) Полная внутренняя энергия в общем случае не совпадает с - полной кинетической энергией поступательного движения молекул, так как газ может состоять из сложных молекул, в которых могут быть внутренние движения – вращения, колебания и т.д., поэтому в общем случае.

Можно считать, что молекулы одноатомных газов, таких как гелий или аргон, не имеют внутренних степеней свободы, для этих газов внутренняя энергия совпадает с энергией поступательного движения т.е.. Для таких газов (2.6) можно записать в виде Можно считать, что молекулы одноатомных газов, таких как гелий или аргон, не имеют внутренних степеней свободы, для этих газов внутренняя энергия совпадает с энергией поступательного движения т.е.. Для таких газов (2.6) можно записать в виде. (2.7). (2.7)