Законы термодинамики Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все макроскопические тела. Любая.

Презентация:



Advertisements
Похожие презентации
Основы термодинамики Выполнила: Силина Н. А.. Термодинамическая система Термодинамическая система – система, состоящая из одного или нескольких макроскопических.
Advertisements

Лекция 2 Элементы термодинамики 1 План лекции 1. Термодинамика. 2. Основные термины термодинамики. 3. Работа газа. 4. Тепловая энергия. Внутренняя энергия.
11. Основы термодинамики 11.1 Первое начало термодинамики При термодинамическом описании свойств макросистем используют закономерности, наблюдающиеся в.
Рассмотрим соотношение (11.9.2), полученное для цикла Карно где Т 1 – температура нагревателя, Q 1 – тепло, полученное газом от нагревателя, Т 2 – температура.
Презентация к уроку по физике (10 класс) по теме: Основы термодинамики
ВТОРОЕ И ТРЕТЬЕ НАЧАЛА ТЕРМОДИНАМИКИ Энтропия. Приведенная теплота. Энтропия Из рассмотренного цикла Карно видно, что равны между собой отношения теплот.
КРУГОВЫЕ ПРОЦЕССЫ. ТЕПЛОВЫЕ МАШИНЫ 1.Круговые обратимые и необратимые процессы 2. Тепловые машины 3. Цикл Карно (обратимый) 4. Работа и КПД цикла Карно.
ТЕРМОДИНАМИКА Внутренняя энергия Термодинамика – раздел физики, изучающий возможности использования внутренней энергии тел для совершения механической.
Термодинамика Термодинамика (от греч. Therme тепло + Dynamis сила) раздел физики, изучающий соотношения и превращения теплоты и других форм энергии.
Температура. Уравнение состояния Примем в качестве постулата, что в состоянии хаотического движения молекул газа имеет место закон равнораспределения энергии.
Необратимость тепловых процессов. Тепловые двигатели. КПД тепловых двигателей.
Тепловые двигатели. Термодинамические циклы. Цикл Карно ГОУ СОШ 625 Н. М. Турлакова.
ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Внутренняя энергия. Работа и теплота. Теплоемкость идеального газа.
ВНУТРЕННЯЯ ЭНЕРГИЯ. Цель Изучить понятие внутренней энергии и ее связь с кинетической и потенциальной энергиями, познакомиться с различными способами.
Законы термодинамики. Вопросы для повторения: Что такое внутренняя энергия?внутренняя энергия Назовите способы изменения внутренней энергии.способы изменения.
Подготовила и провела преподаватель физики Т.П.Никишина.
КРУГОВЫЕ ПРОЦЕССЫ Цикл Карно Тепловые машины Холодильные машины.
Обобщающий урок по теме « термодинамика ». Цель урока : повторить основные понятия темы « Термодинамика », продолжить формирование умений описывать термодинамические.
1 Дать определение понятиям, используя графические иллюстрации: числа степеней свободы молекулы, работы и теплоты, внутренней энергии идеального газа,
Лекция 3 Второе начало термодинамики 18/09/2014 Алексей Викторович Гуденко S = knG.
Транксрипт:

Законы термодинамики Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все макроскопические тела. Любая макроскопическая система характеризуется в состоянии равновесия набором макроскопических параметров, таких, например, как давление, температура, намагниченность и т.д. Задание этих параметров определяет в термодинамике состояние или макроскопическое состояние системы. Вопрос о том, какими именно параметрами должно описываться состояние каждой конкретной макроскопической системы, выходит за рамки термодинамики Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все макроскопические тела. Любая макроскопическая система характеризуется в состоянии равновесия набором макроскопических параметров, таких, например, как давление, температура, намагниченность и т.д. Задание этих параметров определяет в термодинамике состояние или макроскопическое состояние системы. Вопрос о том, какими именно параметрами должно описываться состояние каждой конкретной макроскопической системы, выходит за рамки термодинамики

Первый закон термодинамики постулирует существование внутренней энергии – некоторой функции состояния[1], такой, что если к системе подводится тепло и над ней производится работа, то изменение внутренней энергии есть сумма подведенного тепла и совершенной работы: Первый закон термодинамики постулирует существование внутренней энергии – некоторой функции состояния[1], такой, что если к системе подводится тепло и над ней производится работа, то изменение внутренней энергии есть сумма подведенного тепла и совершенной работы:[1]. (2.21). (2.21) При этом ни работа, ни количество теплоты сами по себе не являются функциями состояния, они определяются процессом, происходящим с системой. При этом ни работа, ни количество теплоты сами по себе не являются функциями состояния, они определяются процессом, происходящим с системой. С точки зрения молекулярно-кинетических представлений, внутренняя энергия это механическая энергия, связанная с движением и взаимодействием атомов; равенство (2.21) можно рассматривать как обобщение (2.11) на все макроскопические системы. С точки зрения молекулярно-кинетических представлений, внутренняя энергия это механическая энергия, связанная с движением и взаимодействием атомов; равенство (2.21) можно рассматривать как обобщение (2.11) на все макроскопические системы.

Сообщение телу некоторого количества теплоты может привести к изменению его температуры. Пусть - количество теплоты, сообщенное телу в некотором процессе, а - изменение температуры тела в этом процессе. Величину Сообщение телу некоторого количества теплоты может привести к изменению его температуры. Пусть - количество теплоты, сообщенное телу в некотором процессе, а - изменение температуры тела в этом процессе. Величину, где - масса тела, называют удельной теплоемкостью тела, а величину где - масса тела, называют удельной теплоемкостью тела, а величину где - количество вещества – молярной теплоемкостью. где - количество вещества – молярной теплоемкостью.

Процесс прихода замкнутой термодинамической системы в состояние теплового равновесия характеризуется необратимостью – если система пришла в состояние равновесия, то в дальнейшем она неограниченно долго остается в этом состоянии и не может выйти из него самопроизвольно. Опыт показывает, что такая необратимость присуща не только всему процессу прихода в равновесие в целом, но и каждому его малому «шагу» в отдельности. Процесс прихода замкнутой термодинамической системы в состояние теплового равновесия характеризуется необратимостью – если система пришла в состояние равновесия, то в дальнейшем она неограниченно долго остается в этом состоянии и не может выйти из него самопроизвольно. Опыт показывает, что такая необратимость присуща не только всему процессу прихода в равновесие в целом, но и каждому его малому «шагу» в отдельности.

Если, например, привести два однородных тела с различной температурой в тепловой контакт, их температуры в конечном итоге станут одинаковыми, при этом на всех этапах установления теплового равновесия тепло всегда будет переходить от более нагретого тела к менее нагретому. В более сложной системе возможны процессы, при которых тепло переходит от менее нагретого тела к более нагретому, однако, такие процессы всегда сопровождаются другими, так, что любое внутреннее изменение в системе делает ее в целом «ближе» к состоянию равновесия Если, например, привести два однородных тела с различной температурой в тепловой контакт, их температуры в конечном итоге станут одинаковыми, при этом на всех этапах установления теплового равновесия тепло всегда будет переходить от более нагретого тела к менее нагретому. В более сложной системе возможны процессы, при которых тепло переходит от менее нагретого тела к более нагретому, однако, такие процессы всегда сопровождаются другими, так, что любое внутреннее изменение в системе делает ее в целом «ближе» к состоянию равновесия

Эту особенность тепловых процессов можно сформулировать в виде второго закона термодинамики: невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого к телу более нагретому. Такая формулировка второго закона термодинамики называется формулировкой Клаузиуса. Эту особенность тепловых процессов можно сформулировать в виде второго закона термодинамики: невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого к телу более нагретому. Такая формулировка второго закона термодинамики называется формулировкой Клаузиуса.

Можно предложить другую, эквивалентную формулировку второго закона, если заметить, что всегда существует возможность преобразовать в тепло любое количество механической работы, например, с помощью трения. Если бы были возможны процессы, единственным результатом которых был бы переход тепла в работу, то можно было бы использовать эту работу для нагревания более горячего тела. Значит, невозможны такие процессы, единственным конечным результатом которых было бы преобразование некоторого количества теплоты, полученного от тела в механическую работу. Эта формулировка называется формулировкой Кельвина. Можно предложить другую, эквивалентную формулировку второго закона, если заметить, что всегда существует возможность преобразовать в тепло любое количество механической работы, например, с помощью трения. Если бы были возможны процессы, единственным результатом которых был бы переход тепла в работу, то можно было бы использовать эту работу для нагревания более горячего тела. Значит, невозможны такие процессы, единственным конечным результатом которых было бы преобразование некоторого количества теплоты, полученного от тела в механическую работу. Эта формулировка называется формулировкой Кельвина.

Дальнейшие выводы из второго закона термодинамики удобнее всего получить с помощью метода, предложенного С. Карно, работы которого фактически и положили начало теоретической термодинамике. Карно рассматривал тепловые машины – устройства, которые преобразуют тепловую энергию в механическую работу Дальнейшие выводы из второго закона термодинамики удобнее всего получить с помощью метода, предложенного С. Карно, работы которого фактически и положили начало теоретической термодинамике. Карно рассматривал тепловые машины – устройства, которые преобразуют тепловую энергию в механическую работу

Схематически работу любой тепловой машины можно представить так. Тепловая машина обязательно имеет в своем составе рабочее тело или рабочее вещество – макроскопическое тело, которое и совершает механическую работу (рис.17). Рабочее тело совершает в ходе работы машины цикл или циклический процесс – процесс, при котором конечное состояние совпадает с начальным. Схематически работу любой тепловой машины можно представить так. Тепловая машина обязательно имеет в своем составе рабочее тело или рабочее вещество – макроскопическое тело, которое и совершает механическую работу (рис.17). Рабочее тело совершает в ходе работы машины цикл или циклический процесс – процесс, при котором конечное состояние совпадает с начальным.

Поскольку внутренняя энергия рабочего тела после совершения им цикла не изменяется, работа в цикле может совершаться только за счет того, что рабочему телу передается некоторое количество теплоты от нагревателя – тела, имеющего постоянную температуру. Согласно второму закону термодинамики, невозможен процесс, единственным результатом которого было бы преобразование теплоты целиком в работу. Поэтому, некоторое количество теплоты должно передаваться при циклическом процессе холодильнику – телу, находящемуся при температуре, меньшей, чем Поскольку внутренняя энергия рабочего тела после совершения им цикла не изменяется, работа в цикле может совершаться только за счет того, что рабочему телу передается некоторое количество теплоты от нагревателя – тела, имеющего постоянную температуру. Согласно второму закону термодинамики, невозможен процесс, единственным результатом которого было бы преобразование теплоты целиком в работу. Поэтому, некоторое количество теплоты должно передаваться при циклическом процессе холодильнику – телу, находящемуся при температуре, меньшей, чем