Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 18. Тема: Транспортная задача. Цель: Рассмотреть условия,

Презентация:



Advertisements
Похожие презентации
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 19. Тема: Транспортная задача. Цель: Рассмотреть метод.
Advertisements

ТРАНСПОРТНАЯ ЗАДАЧА Лекции 10,11. Транспортная задача является частным случаем задачи линейного программирования и может быть решена симплекс-методом.
Транспортная задача линейного программирования. Постановка транспортной задачи Однородный груз, имеющийся в m пунктах отправления (производства) А 1,
Часть 3 СПЕЦИАЛЬНЫЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 2. Тема: Обратная матрица Цель: Рассмотреть понятие.
Транспонирование матрицы переход от матрицы А к мат­рице А', в которой строки и столбцы поменялись местами с сохранением порядка. Матрица А' называется.
Транспортная задача частный случай задачи линейного программирования.
Транспортная задача линейного программированияТранспортная задача линейного программирования.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 17. Тема: Графический метод и симплекс-метод задачи.
Определение опорного плана транспортной задачи Метод северо-западного угла Метод минимального элемента Метод аппроксимации Фогеля.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения.
Симплекс-метод Лекции 6, 7. Симплекс-метод с естественным базисом Симплекс –метод основан на переходе от одного опорного плана к другому, при котором.
Транспортная задача. Некоторая продукция находится у нескольких поставщиков в различных объёмах. Ее необходимо доставить ряду потребителей в разных количествах.
Системы линейных алгебраических уравнений (СЛАУ).
Решение транспортной задачи в среде Excel Лекция 12.
Лекция 5. Транспортные задачи и задачи о назначениях Содержание лекции: 1. Формулировка транспортной задачи Формулировка транспортной задачи Формулировка.
Экономико- математические методы и модели Курс лекций.
Высшая математика Кафедра математики и моделирования Преподаватель Никулина Л. С. Четвертый семестр.
Распределительный метод. Рассмотрим пример Пусть задана некоторая транспортная задача и соответствующая ей транспортная таблица
Средняя школа год разработка Агрба Л. М. Далее Информатика и ИКТ ПОИСК РЕШЕНИЯ.
Транксрипт:

Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 18. Тема: Транспортная задача. Цель: Рассмотреть условия, при которых задачу ЛП решают как транспортную.

Пусть однородный продукт, сосредоточенный в m отправления в количествах единиц, необходимо доставить в каждый из n пунктов назначения в количествах единиц. Стоимость перевозки единицы продукта из i-го (i= ) пункта отправления в j-й (j= ) пункт назначения равна и известна для всех компаний (i; j). Пусть – количество продукта, перевозимого по маршруту (i; j). Задача - определение таких величин для всех маршрутов (i; j), при которых суммарная стоимость перевозок минимальна.

Запишем условие задачи в виде матрицы планирования:

Математическая модель задачи: т.к. от i- го поставщика к j-му потребителю запланировано к перевозке ед.груза, то стоимость перевозки составит.

Стоимость всего плана выразится двойной суммой:

Систему ограничений получаем из следующих условий задачи: 1.) Все грузы должны быть вывезены, т.е. 2.) Все потребности должны быть удовлетворены, т.е.

Построение первоначального опорного плана.

При решении задач ЛП итерационный процесс по описанию оптимального плана начинают с определения опорного плана.

Система ограничений транспортной задачи содержит mn неизвестных и m+n уравнений.

Клетки в таблице матрицы планирования, в которых находятся отличные от 0 перевозки, называются занятыми, остальные незанятыми. Занятые клетки соответствуют базисным неизвестным и для невырожденного опорного плана их должно быть m+n-1.

Опорность плана заключается в его ацикличности (это ситуация, при которой нельзя построить замкнутый многоугольник или цикл, все вершины которого будут лежать в занятых клетках).

Циклом называется набор клеток, в котором две и только две соседние клетки расположены в одном столбце или в одной строке таблице, причем последняя клетка находится в той же строке или столбце, что и первая.

Построение циклов начинают с какой- либо занятой клетки и переходят по столбцу (строке) к другой занятой клетке, в которой делают поворот под прямым углом и движутся по строке (столбцу) к следующей занятой клетке и т.д., пытаясь возвратиться к первоначальной клетке.

Клетки, в которых происходит поворот под прямым углом, определяют вершины цикла.

Если план транспортной задачи содержит более m+n-1 занятых клеток, он не является опорным, т.к. ему соответствует линейно-зависимая система векторов. В этом случае в таблице всегда можно поставить замкнутый цикл, с помощью которого всегда уменьшают число занятых клеток до m+n-1.

Если к занятым клеткам, определяющим опорный невырожденный план, а значит и цикличный, присоединить какую- либо незанятую клетку, то план становится не опорным, появляется единственный цикл, все вершины которого за исключением одной, лежат в занятых клетках.

Вопросы: 1)При каких условиях транспортная задача имеет решение? 2)Что такое цикл?