Алгебра логики. Алгебра логики это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.

Презентация:



Advertisements
Похожие презентации
Логика – это наука формах и способах мышления. Это учение о способах рассуждений и доказательств. Понятие – это форма мышления, которая выделяет существенные.
Advertisements

Алгебра логики (булева алгебра) - это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности)
ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОЙ ЛОГИКИ :18.
Логика - наука, изучающая законы и формы мышления. В логике мышление рассматривается как инструмент познания окружающего мира.
Что такое алгебра логики?. Алгебра логики это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических Значений (истинности.
Логические основы построения компьютера. Основные понятия алгебры логики Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые.
Алгебра логики. Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности)
С помощью логических переменных и символов логических операций любое высказывание можно заменить логическим выражением ( формулой). Алгебра логики – это.
Логические основы ЭВМ Логика высказываний. Рассмотрим несколько утверждений Все рыбы умеют плавать Пять – число четное Некоторые медведи бурые Картины.
ГБПОУ «МСС УОР 2» Москомспорта Преподаватель информатики Володина М.В г.
Элементы логики Составлено по учебнику Угринович «Информатика и информационные технологии.».
Алгебра логики и логические основы компьютера.
Высказывания. 1. Понятие высказывания 2. Операции с высказываниями 3. Таблица истинности 4. Булевы функции План:
Морозова Инна Валентиновна Учитель информатики и технологии МБОУ»СОШ 3 им. Г.В.Зимина» г. Калуги.
Алгебра логики. Логика Логика – это наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и.
Математическая логика. Пон я тие высказываний Понятие высказываний Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее.
Логика – это наука о способах рассуждения, то есть о том, как делать верные умозаключения, пользуясь доступной информацией.
Логика – это наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и опровержений, т. е. методы.
Алгебра логики. Логика Логика – это наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и.
Логика Подготовила : Набиева Рузиля Класс 11 «Б».
Транксрипт:

Алгебра логики

Алгебра логики это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.

Возникновение логики Понятие логики как науки появилось ещё в XIX в., т.е. задолго до появления науки информатики и компьютеров. Элементы математической логики можно найти уже в работах древнегреческих философов. В XVII в. Г. В. Лейбниц высказал идею о том, что рассуждения могут быть сведены к механическому выполнению определенных действий по установленным правилам. Однако как самостоятельный раздел математики логика начала формироваться только с середины XIX в..

Употребляемые в обычной речи слова и словосочетания "не, и, или, если..., то, тогда и только тогда и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Логическое высказывание это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно. Логические связки "не, и, или, если..., то,тогда и только тогда и другие позволяют из уже заданных высказываний строить новые высказывания. Высказывания, образованные из других высказываний с помощью логических связок, называются составными. Высказывания, не являющиеся составными, называются элементарными.

Так, например, из элементарных высказываний Петров врач, Петров шахматист при помощи связки и можно получить составное высказывание Петров врач и шахматист, понимаемое как Петров врач, хорошо играющий в шахматы. При помощи связки или из этих же высказываний можно получить составное высказывание Петров врач или шахматист, понимаемое в алгебре логики как Петров или врач, или шахматист, или и врач и шахматист одновременно. Истинность или ложность получаемых таким образом составных высказываний зависит от истинности или ложности элементарных высказываний.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение: (1) Операция, выражаемая словом не, называется отрицанием и обозначается чертой над высказыванием (или знаком щ ). Высказывание истинно, когда A ложно, и ложно, когда A истинно. Пример. Луна спутник Земли (А); Луна не спутник Земли ( ).

(2) Операция, выражаемая связкой и, называется конъюнкцией (лат. conjunctio соединение) или логическим умножением и обозначается точкой "" (может также обозначаться знаками Щ или &). Высказывание АВ истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание 10 делится на 2 и 5 больше 3 истинно, а высказывания 10 делится на 2 и 5 не больше 3, 10 не делится на 2 и 5 больше 3, 10 не делится на 2 и 5 не больше 3 ложны.

(3) Операция, выражаемая связкой или (в неразделительном, неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны. Например, высказывание 10 не делится на 2 или 5 не больше 3 ложно, а высказывания 10 делится на 2 или 5 больше 3, 10 делится на 2 или 5 не больше 3, 10 не делится на 2 или 5 больше 3 истинны.

(4) Операция, выражаемая связками если..., то, из... следует,... влечет..., называется импликацией (лат. implico тесно связаны) и обозначается знаком. Высказывание А В ложно тогда и только тогда, когда А истинно, а В ложно. Например, даны 2 высказывания: данный четырёхугольник квадрат (А) и около данного четырёхугольника можно описать окружность (В).

Рассмотрим составное высказывание А В, понимаемое как если данный четырёхугольник квадрат, то около него можно описать окружность. Есть три варианта, когда высказывание А В истинно: А истинно и В истинно, то есть данный четырёхугольник квадрат, и около него можно описать окружность; А ложно и В истинно, то есть данный четырёхугольник не является квадратом, но около него можно описать окружность (разумеется, это справедливо не для всякого четырёхугольника); A ложно и B ложно, то есть данный четырёхугольник не является квадратом, и около него нельзя описать окружность. Ложен только один вариант: А истинно и В ложно, то есть данный четырёхугольник является квадратом, но около него нельзя описать окружность.

(5) Операция, выражаемая связками тогда и только тогда, "необходимо и достаточно,... равносильно..., называется эквиваленцией или двойной импликацией и обозначается знаком или ~. Высказывание А В истинно тогда и только тогда, когда значения А и В совпадают.

Существуют и другие логические операции: Операция, выражаемая связками если..., то,из... следует,... влечет..., называется импликацией. Операция, выражаемая связками тогда и только тогда, "необходимо и достаточно,... равносильно..., называется эквиваленцией или двойной импликацией. Импликацию можно выразить через дизъюнкцию и отрицание. Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию.

Любое высказывание можно формализовать, то есть заменить логической формулой. Формулы, принимающие значение истина при любых значениях истинности входящих в них переменных называются тождественно истинными формулами или тавтологиями. Формулы, принимающие значение ложно при любых значениях истинности входящих в них переменных, называются тождественно ложными формулами или противоречиями. Две формулы при одинаковых наборах значений входящих в них переменных, принимающие одинаковые значения, называются равносильными.

Логический элемент компьютера это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию. Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

С х е м а И Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль. Схема И реализует конъюнкцию двух или более логических значений.

Таблица истинности xy x y

С х е м а ИЛИ Схема ИЛИ реализует дизъюнкцию двух или более логических значений. Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица.

Таблица истинности xyx v y

С х е м а НЕ Схема НЕ (инвертор) реализует операцию отрицания. Если на входе схемы 0, то на выходе 1. Когда на входе 1, на выходе 0.

Таблица истинности x 01 10

С х е м а И - НЕ Схема И-НЕ состоит из элемента И и инвертора и осуществляет отрицание результата схемы И.

Таблица истинности xy

С х е м а ИЛИ - НЕ Схема ИЛИ-НЕ состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ.

Таблица истинности xy

Преобразование выражений, состоящих из булевых функций от перестановки мест аргументов результат не изменяется A & B = B & A существует следующий закон A & (B & C) = (A & B) & C Также существуют некоторые тождества, опирающиеся на особые свойства функции, например: 1) A & (~A) = ЛОЖЬ 2) (~A) & (~B) = ~ (A v B) Аналогично, сложение и логическое «ИЛИ»: от перестановки мест аргументов результат не изменяется A v B = B v A существует следующий закон (A v B) v С = A v (B v C) можно выносить общий множитель за скобки (A & B) v (С & B) = B & (A v C) И также некоторые собственные законы: 1) A v (~A) = ИСТИНА 2) (~A) v (~B) = ~ (A & B)

Самостоятельная работа 8 Что такое алгебра логики? Перечислите основные логические операции? Что такое логический элемент компьютера?