ТЕМА УРОКА: «ЭЛЕМЕНТЫ КОМБИНАТОРИКИ» (ПРАКТИКУМ) Цели: Повторить основные понятия комбинаторикиосновные понятия Сформировать умения решать различные виды комбинаторных задачкомбинаторных задач
Проверь себя! 1Что такое комбинаторика?комбинаторика 2В чем состоит комбинаторное правило умножения?правило умножения? 3Что такое перестановки?перестановки 4Записать формулу для нахождения числа перестановок? формулу 5Что такое факториал? факториал 6Что такое размещения?размещения 7Записать формулу для нахождения числа размещений?формулу 8Что такое сочетания?сочетания 9Записать формулу для нахождения числа сочетаний?формулу 10В чём различие между перестановками, размещениями и сочетаниями?
Подбор комбинаторных задач А 1 Восьмиклассники Анна, Борис, Виктор и Галина побежали на перемене к теннисному столу, за которым уже шла игра. Сколькими способами подбежавшие к столу восьмиклассники могут занять очередь для игры в настольный теннис? (решение)решение 2 Сколькими способами можно расставить 8 участниц финального забега на восьми беговых дорожках? (решение)решение) 3 Учащиеся 2 класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нём было 4 различных предмета? (решение)решение 4 Из набора, состоящего из 15 красок, надо выбрать 3 краски для окрашивания шкатулки. Сколькими способами можно сделать этот выбор? (решение)решение Далее Устал - отдохни
Решение: 1 Первым в очередь мог встать любой из четырёх ребят, вторым – любой из оставшихся трёх, третьим – любой из оставшихся двух и четвёртым - последний. По правилу произведения :4*3*2*1=24 способа. 2 Число способов равно числу перестановок из 8 элементов : Р 8 =8!=1*2*3*4*5*6*7*8= Любое расписание на один день, составленное из 4 различных предметов, отличается от другого либо набором предметов, либо порядком их следования. Имеем размещения из 9 по 4: 4 Каждый набор трёх красок отличается от другого хотя бы одной краской. Имеем сочетания из 15 по 3 :.
В 1 В шахматном кружке занимаются 16 человек. Сколькими способами тренер может выбрать из них для предстоящего турнира : а) команду из четырёх человек; б) команду из четырёх человек, указав при этом, кто из членов команды будет играть на первой, второй, третьей и четвёртой досках? 2 У Антона 6 друзей. Он может пригласить в гости одного или несколько из них. Определите общее число возможных вариантов. 3 В 9 «а» классе учатся 25 учащихся, в 9 «б» - 20 учащихся, а в 9 «в» - 18 учащихся. Для работы на пришкольном участке надо выделить трёх учащихся из 9 «а», двух -из 9 «б» и одного – из 9 «в». Сколько существует способов выбора учащихся для работы на пришкольном участке? С 1 Пять мальчиков и четыре девочки хотят сесть на девятиместную скамейку так, чтобы каждая девочка сидела между двумя мальчиками. Сколькими способами они могут это сделать? 2 Из 12 солдат, в число которых входят Иванов и Петров, надо отправить в наряд трёх человек. Сколькими способами это можно сделать, если: а) Иванов и Петров должны пойти в наряд обязательно; б) Иванов и Петров должны остаться; в)Иванов должен пойти в наряд, а Петров –остаться? (Ответы)Ответы Устал - отдохни
Ответы: В 1 а) 1820 способов; б) способов способа, указание:С 6 1 +С 6 2 +С 6 3 +С 6 4 +С 6 5 +С способов, указание:С 25 3 *С 20 2 *С С способов, указание:Р 5 *Р 4. 2 а)10 способов; б)120 способов; в)45 способов.
отгадай ребусы
Понятие науки « Комбинаторика» Комбинаторикой называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных объединений элементов), подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству. Комбинаторикой называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных объединений элементов), подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству. Слово «комбинаторика» происходит от латинского слова combinare, которое означает «соединять, сочетать». Слово «комбинаторика» происходит от латинского слова combinare, которое означает «соединять, сочетать».
Правило Пусть имеется n элементов и требуется выбрать один за другим некоторые k элементов. Если первый элемент можно выбрать способами, после чего второй элемент можно выбрать из оставшихся элементов способами, затем третий элемент – способами и т.д., то число способов, которыми могут быть выбраны все k элементов, равно произведению: Пусть имеется n элементов и требуется выбрать один за другим некоторые k элементов. Если первый элемент можно выбрать способами, после чего второй элемент можно выбрать из оставшихся элементов способами, затем третий элемент – способами и т.д., то число способов, которыми могут быть выбраны все k элементов, равно произведению:
Определение: комбинации из n-элементов, отличающихся друг от друга только порядком расположения в них элементов, называются перестановками из n элементов. Перестановки из n элементов обозначают Pn и вычисляют по формуле : Pn=n! n!=1*2*3*4*…*n (n факториал ) Свойство : 0!=1 Задача : Сколькими способами могут разместиться 5 пассажиров в пятиместной каюте? Решение: P5=5!=1*2*3*4*5=120
Определение: Размещением из n элементов по k (k
Определение: Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов (не имеет значения, в каком порядке указаны элементы). Число сочетаний из n элементов по k обозначают (читается: «С из n по k»).
МОЛОДЦЫ! МОЛОДЦЫ! СПАСИБО ЗА УРОК! СПАСИБО ЗА УРОК!