Конспект урока алгебры в 8 классе по теме: «Неравенства».
Тип урока: обобщение. Цели урока: Образовательные: а). Обобщение и систематизация знаний учащихся по теме «Неравенства». б). Закрепление навыков решения тестовых заданий по данной теме. Развивающие: а). Формирование и развитие умения мыслить и анализировать. б). Развитие памяти. Воспитывающие: а). Воспитание умения работать самостоятельно. б). Воспитание умения выдерживать регламент времени, отведенного на решение каждого задания. в). Привитие интереса к предмету.
Повторение основных понятий. Новые термины математического языка. 1. Линейное неравенство – неравенство вида ах+в>0 (ах+в<0), где а и в – любые числа, за исключением: а Квадратное неравенство – неравенство вида ах 2 +вх+с>0 (ах 2 +вх +с<0), где а 0.
Основные правила решения неравенств. Правило 1. Правило 1. Любой член неравенства можно перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства. Правило 2. положительное не изменив Правило 2. Обе части неравенства можно умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства.
Основные правила решения неравенств. Правило 3. отрицательное изменив Правило 3. Обе части неравенства можно умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный.
Алгоритм решения квадратного неравенства. 1. Найти корни квадратного трехчлена ах 2 +вх+с. 2. Отметить найденные корни на оси Х и определить, куда (вверх или вниз) направлены ветви параболы, служащей графиком функции у=ах 2 +вх+с; сделать набросок графика. 3. С помощью полученной геометрической модели определить, на каких промежутках оси Х ординаты графика положительны (отрицательны); включить эти промежутки в ответ.
Решение квадратных неравенств методом интервалов. 1. Разложить квадратный трехчлен на множители, воспользовавшись формулой ах 2 +вх+с=а(х-х 1 )(х-х 2 ). 2. Отметить на числовой прямой корни трехчлена. 3. Определить на каких промежутках трехчлен имеет положительный или отрицательный знак. 4. Учитывая знак неравенства, включить нужные промежутки в ответ.
Вспомним как решать: 1. Известно, что 0<a<b. Какое из следующих чисел положительно? 1) 2 а - 2 в 2) (а+3)·(-в) 3) в - а 10 4) (а-5 в)·а 2. На координатной прямой отмечены числа а, в и с. Какое из приведенных утверждений об этих числах неверно? 1) b – c > 0 2) a + b < 0 3) ba > 0 4) abc < 0 / / а в с 0 х
Вспомним как решать: 3. Решите линейное неравенство: 3 х – 5 7 х х – 7 х х х 10 х 2,5 Ответ: (-; 2,5]. 1. Перенесите слагаемые, не забыв поменять знаки слагаемых 2. Приведите подобные слагаемые в левой и в правой частях неравенства Умножьте обе части на -1, не забыв поменять знак неравенства.
Вспомним как решать: 4. Решите неравенство методом интервалов: а) х 2 >16 б) х 2 +5>0 х 2 -16>0 Ответ: верно при (х-4)(х+4)>0 любом значении Х в) х 2 + 5< х Ответ: не имеет Ответ:(-;-4)U(4;+) решений.
Вспомним как решать: 5. Решите квадратное неравенство: х 2 +7 х-8<0 Как найти х 1,2 ? х 1 =1; х 2 =-8. 1) + + 2) х 1 +х 2 =-в; х 1 х 2 =с х 3) Если а+в+с=0, то Ответ: (-8; 1) х 1 =1; х 2 =с
Самостоятельная работа. Выполните тест:
Вариант 1 А 1. На координатной прямой отмечено число а. Вариант 2 А 1. А 1. О числах а, в и с известно, что с>b>a. / / / / / / а -1 0 а -1 0 Какое из следующих чисел отрицательно? Расположите в порядке убывания числа, 1/а, а 2 числа а, 1/а, а 2 1) с – в 2) в - а 1) а, 1/а, а 2 2) 1/а, а, а 2 3) а – с 4) с - а 3) а 2, 1/а, а 4) а 2, а, 1/а Вариант 3 А 1. Известно, что a<b. Какое из следующих неравенств неверно? Вариант 4 А 1. О числах а, с, х и у известно, что х > у, с = х, а > с. 1) в+4 > а+4 2) 2 в+1<2(1/2+а) Сравните числа у и а. 3) а – в а-21) у > а 2) у = а 3) у < а 4) сравнить нельзя
А 2. Из указанных неравенств выберите верное: Вариант 1 1) 0,6<3/8<4/3 2) 3/8<4/3<0,6 3) 3/8<0,6<4/3 4) 4/3<0,6<3/8 Вариант 2 1) 0,5<6/7<3/5 2) 3/5<0,5<6/7 3) 0,5<3/5<6/7 4) 6/7<0,5<3/5 Вариант 3 1) 0,6<3/7<5/6 2) 3/7<0,6<5/6 3) 5/6<0,6<3/7 4) 3/7<5/6<0,6 Вариант 4 1) 4/5<0,7<1/2 2) 1/2<0,7<4/5 3) 1/2<4/5<0,7 4) 0,7<1/2<4/5
А 3. Решите неравенство: Вариант 1 3 х+5 < х-7 1)2) 1) (-; 6) 2) (6; + ) 3)4) 3) (- ; -6) 4) (-6; + ) Вариант 2 Х+7 > 6-3 х 1)2) 1) (-1/4; + ) 2) (1/4; + ) 3)4) 3) (- ; -1/4) 4) (- ; 1/4) Вариант х 2 х-9 1)2) 1) х 2 2) х -2 3)4) 3) х -2 4) х 2 Вариант 4 Х-4 5 х+8 1)2) 1) [-3; + ) 2) [3; + ) 3)4) 3) (- ; -3] 4) (- ; -2]
Вариант 1 Вариант 2 А 4. Решите неравенство: А 4. Решите неравенство: А 4. верно А 4. Какое из указанных неравенств верно при любом значении Х? Х 2 9 1) х 2 -2>0 2) х ) (-; -3] 2) [-3; 3]3) х ) х 2 +2<0 3)[3; +) 4)(-;-3]U[3;+) Вариант 3 Вариант 4 А 4. А 4. Решите неравенство: А 4. не выполняется А 4. Какое из указанных неравенств не выполняется Х 2 < 4 ни при каком значении Х? 1) (-;-2)U(2;+) 2) (-2; 2) 1) х ) х 2 +1>0 3) (-;-2]U[2;+) 4) [-2; 2] 3) х 2 1 4) х 2 1
А 5. Решите неравенство: Вариант 1 х 2 +4 х-5 0 1)2) [-5; 1] 1) (-;-5)U(1;+) 2) [-5; 1] 3)4) (-5; 1) 3) (-;-5]U[1;+) 4) (-5; 1) Вариант 2 х 2 -5 х+4 < 0 1) (-2) [4;5] 1) (-;1)U(4;+) 2) [4;5] 3)4) (1;4) 3) (-; 1) 4) (1;4) Вариант 3 (х-2)(х+3) 0 1)2) [2;+ 1) [-3;+) 2) [2;+) 3)4)(- 3) [-3; 2] 4)(-;-3]U[2;+) Вариант 4 х 2 +х-2 0 1)2) (- 1) [-1;2] 2) (-;1)U(2;+) 3)4) [-2; 1] 3) [0; 2] 4) [-2; 1]
Информация для учителя: Ответы к тесту: Оценка теста: Задания А1А1А1А1 А2А2А2А2 А3А3А3А3 А4А4А4А4 А5А5А5А5 Вариант Вариант Вариант Вариант Каждое верно решенное задание оценивается в 1 балл, неверное – 0 баллов. 5 баллов – «5» 4 балла – «4» 3 балла - «3» 0-2 баллов – «2».
Используемая литература: 1.«Алгебра 8 класс», часть 1, учебник, под редакцией А.Г. Мордковича, Мнемозина, 2007 г. 2.«Алгебра 8 класс», часть 2, задачник, под редакцией А.Г. Мордковича, Мнемозина, 2007 г. 3.«Тематический сборник тестовых заданий по алгебре для подготовки к государственной (итоговой) аттестации в новой форме», базовый уровень, под редакцией Е.А. Семенко, Просвещение-Юг, Краснодар, 2008 г. 4.«Экзаменационные тестовые задания», Федеральная служба по надзору в сфере образования и науки РФ, 2008 г. 5.«Краевые диагностические работы по алгебре в 9 классе», Департамент образования и науки Краснодарского края, ККИДППО, 2008 г.