Золотой пропорцией и даже «божественной пропорцией» называли математики древности и средневековья деление отрезка, при котором длина всего отрезка так.

Презентация:



Advertisements
Похожие презентации
Золотое сечение. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части,
Advertisements

Новицкая Янина. Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание,
Золотое сечение Выполнила: ученица 6в класса МОУ СОШ 26 г. Благовещенска Гончарова Светлана.
Выполнила : Гущеня Светлана Анатольевна. 2 Содержание Принцип золотого сечения Принцип золотого сечения Принцип золотого сечения Принцип золотого сечения.
Муниципальное бюджетное образовательное учреждение средняя общеобразовательная школа с.Каркаусь Кукморского муниципального района РТ Учительница математики.
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок.
Пропорция 6 класс. Пропорции Золотого сечения Уже древние греки использовали законы пропорции при строительстве зданий. Уже древние греки использовали.
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Пропорции в природе, искусстве и архитектуре Пропорции в природе, искусстве и архитектуре.
К примеру, в правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении (т. е. отношение синего отрезка к зелёному,
Золотое сечение Урок математики, 6 класс Тема «Отношения и пропорции»
МОУ «Шарапово – Охотская средняя общеобразовательная школа» Проектная работа по теме: Выполнили ученики 6 класса: Симарова Анастасия Изгаршев Егор Изгаршев.
Проект выполнили: ученик 11 А класса Коновалов Даниил, ученица 6 В класса Коновалова Дарья Руководитель: Шершнева Е.Г., учитель математики.
Пифагор ( г.г. До н. э.) Евдокс ( г.г. До н. э.) Леонардо да Винчи ( г.г.) Пропорции, т. е. равенства отношений изучались пифагорейцами.
Пропорции Учение о пропорциях особенно успешно развивалось в Древней Греции С пропорциями связывались представления о красоте, порядке и гармонии Слово.
Пересечение двух пересекающихся прямых Пересечение двух пересекающихся прямых Пересечение прямой и плоскости а) параллельное проецирование а) параллельное.
Изучить понятие «золотое сечение»; Рассмотреть применение «золотого сечения» в архитектуре, искусстве, биологии; Исследовать присутствие золотого сечения.
Исследовательская работа по математике Золотое сечение Выполнил: ученик 6 класса 3 Варсеев Дмитрий Брянский городской лицей 1 имени А.С.Пушкина.
Геометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое- деление отрезка в среднем и крайнем от- ношении. И. Кеплер.
Транксрипт:

Золотой пропорцией и даже «божественной пропорцией» называли математики древности и средневековья деление отрезка, при котором длина всего отрезка так относится к длине его большей части, как длина большей части к меньшей. Это отношение приближенно равно 0,618=5/8. Открытие золотого сечения приписывают древнегреческому ученому Пифагору Самосскому. Золотое сечение чаще всего применяется в произведениях искусства, архитектуры, встречается в природе.

Термин «золотое сечение» был введён гораздо позднее Леонардо да Винчи, который использовал золотое сечение как пропорции «идеального человеческого тела». Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции «золотого сечения». Размеры холста для картин художники нередко выбирали в соответствие с этой пропорцией

Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи.

На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины по золотому сечению и дальше. Золотое сечение в картине И. И. Шишкина"Сосновая роща"

В. А. Тропинин Портрет А. С. Пушкина В. Боровиковский «Портрет М. И. Лопухиной» В данных картинах выявлено наличие ярких вертикалей, делящих элементы портретов в отношении золотого сечения. Золотое сечение в картинах

Для того, чтобы привлечь внимание к главному элементу картины, необходимо совместить этот элемент с одним из зрительных центров. В картине Н.Н. Ге "Александр Сергеевич Пушкин в селе Михайловском применяется этот закон. В картине фигура Пушкина поставлена художником слева на линии золотого сечения. Голова военного, с восторгом слушающего чтение поэта, находится на другой вертикальной линии золотого сечения. Золотое сечение в картинах

Принято считать, что объекты, содержащие в себе «золотое сечение», воспринимаются людьми как наиболее гармоничные. Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании. Например, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого сечения. Золотое сечение в архитектуре φ φ 1 2

Одним из красивейших и гармоничных произведений древнегреческой архитектуры является Парфенон (V в. до н. э.). Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада.

Известный русский архитектор М. Казаков в своем творчестве широко использовал «золотое сечение», которое можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Голицынская больница, и тоже по законам золотой пропорции.

Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13 : 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8 : 5 = 1,6. У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д. Золотые пропорции человека

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. Золотое сечение в скульптуре Еще в древности основу скульптуры составляла теория пропорций

Бронзовая статуя Апполона Бельведерского.

Н. Васютинский констатирует: "Кульминацией главы является объяснение Евгения в любви к Татьяне - строка "Бледнеть и гаснуть... вот блаженство!". Эта строка делит всю восьмую главу на две части - в первой 477 строк, а во второй строк. Их отношение равно 1,617! Тончайшее соответствие величине золотой пропорции! Это великое чудо гармонии, совершенное гением Пушкина!". Евгений Онегин

Сенсационное открытие сделал петербургский поэт и переводчик Слова о полку Игореве Андрей Чернов. Он нашел, что построение стихов загадочного древнерусского памятника подчиняется математическим законом. Исследования позволили сделать Чернову заключение о том, что в основу Слова о полку Игореве, состоящего из девяти песен, легла круговая композиция. Уже первые расчеты стали подтверждать закономерность, да еще какую! Если число стихов во всех трех частях (их 804) разделить на число стихов в первой и последней части (256), получается 3,14, т.е. число π с точностью до третьего знака. Математические законы в произведении Слово о полку Игореве