История тригонометрии выполнили: ученицы 10 В класса Жданова Людмила Бабичева Роксана учитель: Мартюшова Валентина Алексеевна
Тригонометрия Слово греческое и означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю). Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё две тысячи лет назад. Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.).
Учёные первооткрыватели Мухамед-бен Мухамед ( ) составил таблицы синусов и тангенсов через 10 с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед ( ). Насиреддин Туси в работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину. Арабский перевод «Начал» Евклида
Теорему тангенсов доказал Региомонтан (латинизированное имя немецкого астронома и математика Иоганна Мюллера ( )). Он составил также подробные тригонометрические таблицы; Дальнейшее развитие тригонометрия получила: в трудах выдающихся астрономов Николая Коперника ( ) – творца гелиоцентрической системы мира, Тихо Браге ( ) Иогана Кеплера ( ), в работах математика Франсуа Виета ( ), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.
История названия функций При переводе арабских математических текстов было заменено латинским синус (sinus – изгиб, кривизна). Косинус – это сокращение латинского выражения completely sinus, т. е. дополнительный синус (или иначе синус дополнительной дуги; cosa = sin( 90° - a)). Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности). Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль- Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов.
Применение функций Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Преобразование энергии внутри кванта электромагнитного излучения
Заключение Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях. Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе – наука об измерении углов, от греческого gwnia - угол, metrew- измеряю). Термин гониометрия в последнее время практически не употребляется.
Литература ru.wikipedia.org