«Простейшие вероятностные задачи».. Замечательно, что наука, которая начала с рассмотрения азартных игр, обещает стать наиболее важным объектом человеческого.

Презентация:



Advertisements
Похожие презентации
Тема урока: «Простейшие вероятностные задачи». 11 класс.
Advertisements

Тема урока: «Простейшие вероятностные задачи». 11 класс Учитель математики Гомонова Галина Васильевна ГБОУ СОШ п. Масленниково Хворостянского района Самарской.
Тема урока: «Простейшие вероятностные задачи». 11 класс Учитель математики Гомонова Галина Васильевна ГБОУ СОШ п. Масленниково Хворостянского района Самарской.
Тема урока: «Достоверные, невозможные и случайные события».
Шепенко Г.Н.- учитель математики Берновской СОШ Старицкого р-на Тверской области.
Понятие вероятности Из чисел 1, 5, 9 составить трёхзначное число без повторяющихся цифр комбинации Какую часть составляют.
В10 ЕГЭ-2013 Простейшие вероятностные задачи. Решение заданий по материалам ЕГЭ Александрова О.С., учитель математики и информатики МОУ «СОШ 76» г.Саратова.
Тема 2 Операции над событиями. Условная вероятность План: 1.Операции над событиями. 2.Условная вероятность.. Если и, то Часто возникает вопрос: насколько.
Теория вероятности Основные понятия, определения, задачи.
Элементы комбинаторики, статистики и теории вероятности.
Еще больше презентаций на. Основы теории вероятности Основные понятия и определения.
Презентация на тему: Презентация на тему: «Основы теории вероятностей» Презентацию подготовила: Струсевич Анастасия. Презентацию подготовила: Струсевич.
Основы теории вероятности Основные понятия и определения.
Учитель математики: Пелихова В.И. МКОУ «Новоусманский лицей» Простейшие вероятностные задачи.
Автор: Яковлева Екатерина. Об авторе Ученица 8 «А» средней школы 427. Яковлева Екатерина Александровна Дата рождения года. Проект по Теории.
В6 элементы теории вероятностей ГБОУ школа 255 Учитель математики Булатова Л.А.
Пример: выпадение герба и решки при однократном бросании монеты. Два события называются несовместными, если они не могут произойти в одном опыте.
Ст. преп., к.ф.м.н. Богданов Олег Викторович 2010 Элементы теории вероятности.
Теория вероятностей и комбинаторные правила решения задач Учитель Панинской СОШ Киселёва Любовь Викторовна.
1 Случайное событие. Вероятность события. 2 Теория вероятностей – математическая наука, изучающая закономерности в случайных явлениях. Под опытом (экспериментом,
Транксрипт:

«Простейшие вероятностные задачи».

Замечательно, что наука, которая начала с рассмотрения азартных игр, обещает стать наиболее важным объектом человеческого знания. Ведь большей частью жизненные вопросы являются на самом деле задачами из теории вероятностей. П. Лаплас

Событие – это результат испытания. Что такое событие? Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появление шара определенного цвета – событие.

Непредсказуемые события называются случайными. В жизни мы постоянно сталкиваемся с тем, что некоторое событие может произойти, а может и не произойти. После опубликования результатов розыгрыша лотереи событие – выигрыш, либо происходит, либо не происходит. Пример.

Два события, которые в данных условиях могут происходить одновременно, называются совместными, а те, которые не могут происходить одновременно, - несовместными. Брошена монета. Появление «герба» исключает появление надписи. События «появился герб» и «появилась надпись» - несовместные. Пример.

Равновозможными называются события, когда в их наступлении нет преимуществ. Пусть бросают игральную кость. В силу симметрии кубика можно считать, что появление любой из цифр 1, 2, 3, 4, 5 или 6 одинаково возможно (равновероятно). Пример.

Событие, которое происходит всегда, называют достоверным. Событие, которое не может произойти, называется невозможным. Пример. Пусть из урны, содержащей только черные шары, вынимают шар. Тогда появление черного шара – достоверное событие; Появление белого шара – невозможное событие.

Вероятностью события А при проведении некоторого испытания называют отношение числа тех исходов, в результате которых наступает событие А, к общему числу всех (равновозможных между собой) исходов этого испытания. Классическое определение вероятности.

3) частное, оно и будет равно вероятности события А. Значит Алгоритм нахождения вероятности случайного события. Для нахождения вероятности случайного события А при проведении некоторого испытания следует найти: 1) число N всех возможных исходов данного испытания; 2) количество N(A) тех исходов, в которых наступает событие А; Принято вероятность события А обозначать так: Р(А).

Пример. На завод привезли партию из 1000 подшипников. Случайно в эту партию попало 30 подшипников, не удовлетворяющих стандарту. Определить вероятность Р(А) того, что взятый наудачу подшипник окажется стандартным. Благоприятное событие А: подшипник окажется стандартным. Решение. Количество всех возможных исходов N = Количество благоприятных исходов N(A)= =970. Значит: Ответ: 0.97.

Правило умножения: для того, чтобы найти число всех возможных исходов независимого проведения двух испытаний А и В, следует перемножить число всех исходов испытания А и число всех исходов испытания В. Пример. Найдем вероятность того, что при подбрасывании двух костей суммарное число очков окажется равным 5. Благоприятное событие А: в сумме выпало 4 очка. Количество всех возможных исходов: Кол-во благоприятных исходов N(A)= 1-я кость - 6 вариантов 2-я кость - 6 вариантов N=66=36. {1 + 4, 2 + 3, 3 + 2, 4 + 1}=4 Решение: Значит: Ответ:

События А и В называются противоположными, если всякое наступление события А означает наступление события В, а наступление события А – наступление события В. Пример. Бросаем один раз игральную кость. Событие А – выпадение четного числа очков, Событие Ā - выпадение нечетного числа очков.

Решение задач. Монета бросается два раза. Какова вероятность того, что: герб выпадет хотя бы один раз? Решение: Благоприятное событие А: герб выпадет хотя бы один раз. Кол-во всех возможных исходов N = 2 2 = 4. Кол-во благоприятных исходов N(A)={ГГ, ГР, РГ} = 3. Значит : Ответ: 0.75.

В ящике лежат 6 красных и 6 синих шаров. Наудачу вынимают 8 шаров. Определите вероятность события А - все выбранные шары красные. Решение : Р(А) = 0, т.к. это событие А - невозможное. Ответ: 0.

Научная конференция проводится 3 дня. Всего запланировано 50 докладов: в первый день – 30 докладов, а остальные распределены поровну между вторым и третьим днями. Порядок докладов определяется жеребьевкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции? Решение: Благоприятное событие А: доклад профессора М. окажется запланированным на последний день конференции. Кол-во всех возможных исходов N = 50. Кол-во благоприятных исходов N(A)=(50-30):2=10. Значит : Ответ: 0.2.

Перед началом первого тура чемпионата по теннису разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 46 теннисистов, среди которых 19 участников из России, в том числе Ярослав Исаков. Найдите вероятность того, что в первом туре Ярослав Исаков будет играть с каким – либо теннисистом из России. Решение: Благоприятное событие А: в первом туре Ярослав Исаков будет играть с каким – либо теннисистом из России Кол-во всех возможных исходов N = 45. Кол-во благоприятных исходов N(A)=18. Значит : Ответ: 0.4.