Параллельные плоскости. МОУ СОШ 256 г.Фокино. Две плоскости называются параллельными, если они не пересекаются. Плоскости ПересекаютсяПараллельны α β.

Презентация:



Advertisements
Похожие презентации
Параллельные плоскости.. Две плоскости называются параллельными, если они не пересекаются. Плоскости ПересекаютсяПараллельны α β β α α || β α β Признак.
Advertisements

Параллельность плоскостей. 1.Определение параллельных плоскостей (рисунок, символическая запись). 2. Знакомство с теоремой признаком параллельности плоскостей.
Параллельные плоскости.. Плоскости ПересекаютсяПараллельны α β β α α || βα β Признак параллельности плоскостей. Две плоскости называются параллельными,
Параллельные прямые в пространстве. Расположение прямых в пространстве.
Определение Две плоскости называются параллельными, если они не пересекаются. α α β, тогда αβ β.
Взаимное расположение плоскостей пересекаются Параллельны Обозначается.
Параллельность плоскостей. α β а М М є α, М є β => М є а, где а=αβ то есть α, β – пересекающиеся плоскости.
Презентация к уроку по геометрии (10 класс) по теме: Параллельность прямых и плоскостей. Параллельные прямые в пространстве
Параллельные плоскости параллельнымиДве плоскости называются параллельными, если они не пересекаются. либо пересекаются по прямой(рислибо не пересекаются.
Урок по теме: «Параллельность прямых и плоскостей в пространстве.
Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. mathvideourok.moy.su.
Горкунова О.М.. Взаимное расположение в пространстве 2 прямыхПрямой и плоскости2 плоскостей.
Горкунова О.М.. Взаимное расположение в пространстве 2 прямыхПрямой и плоскости2 плоскостей.
Параллельные плоскости. Признак параллельности двух плоскостей Учитель: Савельева H. г. Ивантеевка, 2008 МОУ Гимназия 3 Геометрия, 10 класс тема:
Теорема Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны. α β γ Доказать: Дано: Доказательство. αβ, а в αγ = а,βγ.
Параллельность в пространстве Подготовили : Соловьёв Иван, Перфильева Алина.
Взаимное расположение прямой и плоскости. Признак параллельности прямой и плоскости. Математика, 10 класс.
Бурак Анастасия 10 «в». Параллельными прямыми называются прямые, которые лежат в одной плоскости и либо совпадают, либо не пересекаются.
Параллельность прямых и плоскостей. Определение Две прямые в пространстве называются параллельными, если они не пересекаются и лежат в одной плоскости.
Урок 7 Взаимное расположение прямых в пространстве.
Транксрипт:

Параллельные плоскости. МОУ СОШ 256 г.Фокино

Две плоскости называются параллельными, если они не пересекаются. Плоскости Пересекаются Параллельны α β β α α || β α β Признак параллельности плоскостей.

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Дано: а b = М; а Є α; b Є α а 1 b 1 = М 1 ; а 1 Є β; b 1 Є β a || a 1 ; b || b 1 Доказать: α || β α β а b М b1b1 а 1 а 1 М1М1

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Доказательство: (от противного) Пусть α β = с 1)Тогда а || β, т.к. a || a 1, а 1 Є β а Є α; α β = с, значит а || с. 2)b || β, т.к. b || b 1, b 1 Є β b Є α α β = с, значит b || с. 3)Имеем а || b, то есть через точку М проходят две прямые а и b, параллельные прямой с. Получили противоречие. Значит, α || β. α β а b М b1b1 а 1 а 1 М1М1 с По признаку параллельности прямой и плоскости а || β и b || β.

Задача 51. (еще один признак параллельности) Дано: т п = К, т Є α, п Є α, т || β, п || β. Доказать: α || β. α β т п К с Самостоятельно!!! Доказательство от противного…

Задача 51. (еще один признак параллельности) Дано: т п = К, т Є α, п Є α, т || β, п || β. Доказать: α || β. α β т п К с 1) Допустим, что ___________ 2) Так как __________________, то ______________________. 3)Получаем, что ______________________________________________________. Вывод: α β = с п || β, т || β т || с и п || с через точку К проходят две прямые параллельные прямой с. α || β

Задача 53. Дано: отрезки А 1 А 2 ; В 1 В 2 ; С 1 С 2 О Є А 1 А 2 ; О Є В 1 В 2 ; О Є С 1 С 2 А 1 О = ОА 2 ; В 1 О = ОВ 2 ; С 1 О = ОС 2 Доказать: А 1 В 1 С 1 || А 2 В 2 С 2 А1А1 В1В1 А2А2 В2В2 С2С2 С1С1 О

Задача 53. Дано: отрезки А 1 А 2 ; В 1 В 2 ; С 1 С 2 О Є А 1 А 2 ; О Є В 1 В 2 ; О Є С 1 С 2 А 1 О = ОА 2 ; В 1 О = ОВ 2 ; С 1 О = ОС 2 Доказать: А 1 В 1 С 1 || А 2 В 2 С 2 В2В2 С1С1 А1А1 В1В1 А2А2 С2С2 О

Задача 54. М Р N А В D C

Задача 54. М Р N А D C В

Ответьте на вопросы: Могут ли прямая и плоскость не иметь общих точек? Верно ли, что если две прямые не пересекаются, то они параллельны? Плоскости α и β параллельны, прямая т лежит в плоскости α. Верно ли, что прямая т параллельна плоскости β? Верно ли, что если прямая а параллельна одной из двух параллельных плоскостей, с другой плоскостью прямая а имеет одну общую точку? Верно ли, что плоскости параллельны, если прямая, лежащая в одной плоскости, параллельна другой плоскости? Да Нет Да Нет

Домашнее задание: П. 10, 55; 56; 57. Удачи!