Выполнила группа финансистов. Цель данной работы: Рассмотреть основные типы задач на проценты Показать широту применения задач «на проценты» Выявить сферы.

Презентация:



Advertisements
Похожие презентации
История создания процентов. Само слово «процент» происходит от лат. «pro centum», что означает в переводе «сотая доля». В 1685 году в Париже была издана.
Advertisements

Проценты в нашей жизни Шеламонов Егор Евдокимова Надежда 9 класс.
Исследовательская работа по теме «Проценты в жизни человека» Выполнила: Тарасова Александра ученица 9 класса.
Проценты в истории и задачах. Цель: Формирование функциональной грамотности по теме «Проценты» Задачи: Актуализация знаний о процентах. Расширение знаний.
ПРОЦЕНТЫ В ШКОЛЕ И В ЖИЗНИ. Процент – это математическое понятие, с которым каждый человек сталкивается в своей жизни практически ежедневно. Именно поэтому.
Сотая часть метра – сантиметр 1/100м сантиметр 1/100м Сотая часть центнера – килограмм 1/100ц килограмм 1/100ц Сотая часть рубля – копейка 1/100руб копейка.
ПРОЕКТ Проценты в жизни. Авторы: Кузнецова Валерия, Новов Андрей 8 класс Руководитель : Иванникова Л.И. МОУ «Васильевская ООШ» Проценты в прошлом и настоящем.
Применение решения задач на проценты.. 1.Определение процентов. Процент Процент - это одно из математических понятий. Слово процент происходит от латинского.
Использованы КИМ для подготовки к итоговой аттестации.
Проценты в жизни и математике. Работу выполнили ученицы 6 «Э» класса МОУ «СОШ 54»: Аргутина Екатерина, Исаева Наталия. Исаева Наталия.
Проценты. Слово процент происходит от латинского pro centum, что означает «от сотни» или «на 100». Отсюда и определение: процентом называется сотая часть.
Процент Цели проекта. Повышать уровень знаний по математике. Повышать уровень знаний по математике. Развивать творческие и интеллектуальные свой способности.
Счет и вычисления – основа порядка в голове. (Песталоцци) ПЕСТАЛОЦЦИ (Pestalozzi) Иоганн Генрих ( ),
Математика 5 класс Урок 1 Учитель математики МОУ «СОШ 25» Чернова Ольга Анатольевна.
Проценты - одно из математических понятий, которые часто встречаются в повседневной жизни. Так, мы часто читаем или слышим, что, например, в выборах приняли.
Презентация к уроку по алгебре (7 класс) по теме: РЕШЕНИЕ ЗАДАЧ НА ПРОЦЕНТЫ. 7 КЛАСС
ИСТОРИЯ ВОЗНИКНОВЕНИЯ ПРОЦЕНТОВ «pro centum» (от лат.) - это «на сто». Первые таблицы процентов были составлены ещё вавилонянами. Индийцам проценты были.
Исследовательская работа по теме «ПРОЦЕНТЫ». ПЛАН Введение 1. Из истории происхождения процентов 2. Решение задач на проценты разными способами 3. Решение.
Выяснить: Пользуются ли люди разных профессий процентами. Приходится ли им решать задачи на проценты. Для чего нужны задачи на проценты.
Тема урока: "Проценты". Автор: студент 3 курса физико-математического факультета Галимова Р.Ф. Класс: 5 Предмет: математика Учебник: Математика. 5класс.
Транксрипт:

Выполнила группа финансистов

Цель данной работы: Рассмотреть основные типы задач на проценты Показать широту применения задач «на проценты» Выявить сферы применения данных задач Рассмотреть формулу сложного процента, а также схему расчета сложного процента и их применение при решении задач на проценты

Задачи данной работы: Провести анализ математической и научно- методической литературы по проблеме исследования с целью выделения основных теоретических фактов по теме «Проценты». Выяснить историю происхождения процента, выделить основные типы задач по теме «Проценты». Выяснить сферы использования процентов, их роль в жизни человека. Рассмотреть основные типы задач «на проценты» с их последующим решением, выделить формулу для вычисления «сложного процента», а также схему решения задач на «сложные проценты».

История создания процентов. Само слово «процент» происходит от лат. «pro centum», что означает в переводе «сотая доля». В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращенно от cento). Однако наборщик принял это «cto» за дробь и напечатал «%». Так из-за опечатки этот знак вошёл в обиход. Были известны проценты и в Индии. Индийские математики вычислили проценты, применяя так называемое тройное правило, то есть пользуясь пропорцией. В Древнем Риме были широко распространены денежные расчеты с процентами. Римский сенат установил максимально доступный процент, взимавшийся с должника.

В Европе в средние века расширилась торговля и, следовательно, особое внимание обращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только проценты, но и проценты с процентов (сложные проценты). Часто конторы и предприятия для облегчения расчетов разрабатывали особые таблицы вычисления процентов. Эти таблицы держались в тайне, составляли коммерческий секрет фирмы. Впервые таблицы были опубликованы в 1584 году Симоном Стевином. Фламандский ученый, военный инженер Симон Стевин не был по профессии математиком, но его трудолюбие и талант позволили ему занять достойное место среди выдающихся европейских математиков. Он первым в Европе открыл десятичные дроби. Симон Стевин опубликовал таблицу для вычисления сложных процентов, которая использовалась в торгово-финансовых операциях. В практической жизни полезно знать связь между простейшими значениями процентов и соответствующими дробями: половина - 50%, четверть - 25%, три четверти - 75%, пятая часть - 20%, три пятых - 60% и т.д.

Основные теоретические факты: В любой задачи есть условие, т.е. исходные данные, заключение, т.е. требование, которое нужно выполнить и субъект, который это требование выполнит. Задача – это задание, которое должен выполнить субъект, или вопрос, на который он должен найти ответ, опираясь на указанное условие и все вытекающие из них следствия.

Основные методы решения текстовых задач: Арифметический Арифметический - Суть арифметического метода состоит в том, что задачи решаются по действиям. Алгебраический Алгебраический - Суть алгебраического метода решения задач состоит в том, что одна из величин принимается, например за х, все зависимости существующие между величинами переводятся на язык равенств, уравнений и далее решается полученное уравнение. Здесь мы предполагаем, что искомая величина найдена и оперируем ей как известной величиной. После нахождения х полученные результаты переводятся с математического языка на естественный.

Основные типы задач на проценты: Нахождение процентов от данного. Нахождение числа по его процентам. Нахождение процентного отношения.

Чтобы найти процент от числа, надо это число умножить на соответствующую дробь. Например: 20% от 45кг пшеницы равны 45·0,2=9 кг.

Чтобы найти число по его проценту, надо часть, соответствующую этому проценту разделить на дробь. Например: Если 8% от длины бруска составляют 2,4см, то длина всего бруска равна 2,4:0,08=30см

Чтобы узнать, сколько процентов одно число составляет от второго, надо первое число разделить на второе и результат умножить на 100%. Например. 9г соли в растворе массой 180г составляют 9:180·100%= 5%.

Sp = [P * I * t : K] : 100 I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году(365 или 366) P - сумма привлеченных в депозит денежных средств Sp - сумма процентов (доходов)

S = P + [P * I * t : K] : 100 S - сумма банковского вклада (депозита) с процентами, I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году(365 или 366) P - сумма привлеченных в депозит денежных средств Пример: Предположим что банком принят депозит в сумме 50тыс. рублей сроком на 3 месяца по ставке 10,5 процентов «годовых» Sp = * 10,5 * 90 : 365 : 100 = 1294,52 S = * 10,5 * 30 : 365 : 100 = ,52

Sp = P * [(1 + I * t : K :100) n - 1] или Sp = S - P = P * (1 + I * t : K : 100) n – P I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году (365 или 366) P - сумма привлеченных в депозит денежных средств Sp - сумма процентов (доходов). n - число периодов начисления процентов. S - сумма вклада (депозита) с процентами Однако, при расчете процентов проще сначала вычислить общую сумму вклада с процентами, и только затем вычислять сумму процентов (доходов). Формула расчета вклада с процентами будет выглядеть так: S = P * (1 + I * t : K : 100) n

Пример: Принят депозит в сумме 50тыс. Рублей сроком на 90 дней по ставке 10,5 процентов годовых с начислением процентов каждые 30 дней. S = * (1 + 10,5 * 30 : 365 :100)3 = =51 305,72 Sp = * [(1 + 10,5 * 30 : 365 : 100)3 -1] = =1 305,72

Сфера применения процентов : в финансовой и экономической (банки), социальной (распределение населения), политической (голосование), коммунальной (повышение и понижение стоимости электроэнергии и квартплаты), в товарных отраслях, в научной (химия, физика – величина КПД)

Задача 1. Вкладчик положил некоторую сумму на вклад «Новогодний» в Сбербанк России. Через три года вклад достиг рублей. Каков был первоначальный вклад при 11% годовых? Решение: Используем формулу сложного процента и находим а (1+0,1)3 = ,331а = а = (руб.) – первоначальный вклад Ответ: рублей первоначальный вклад при 11% годовых.

Задача 2. Цена бананов в магазине «Копейка» первоначально составляла 21р.99коп. С декабря месяца цена сначала поднялась на 15%, потом понизилась на 6,5%, затем снова поднялась на 10%. Какова цена бананов? Решение: По формуле сложного процента находим: 21,99(1+0,15)(1,065)(1+0,1)=26(р) Ответ: 26 рублей цена бананов.

Задача 3. На выборах президента РФ в марте приняли участие 68% избирателей Прилузского района. 50% от числа принявших участие в выборах отдали голоса за избранного президента Медведева Д.А. Сколько жителей проголосовало за него, если в городе проживает 75 тыс. взрослого населения? Решение: Определим число избирателей, принявших участие в выборах: · / 100 = (чел.) Определим число избирателей, отдавших голос за Медведева Д.А.: · / 100 = (чел.) Ответ: человек проголосовало за Медведева.

Решение: В 20 т металла содержится 100 – 6 = 94%, или 20 0,94= 18,8 (т) чистого металла, который составляет от массы руды 18,8 100 / 40 = 47 %. Ответ: в руде 47 % примесей. Задача 4. Из 40 т руды выплавили 20 т металла, содержащего 6% примесей. Сколько процентов примесей в руде?

Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни постоянно. Поэтому выбранная нами тема актуальна. В работе мы обобщили предыдущий опыт, связанный с темой «Проценты», а также рассмотрели более сложные задачи по данной теме. Также мы узнали, что при решении задач на проценты можно использовать формулу сложного процента, а также схемы.

Решенные нами задачи показали, что применение формулы «сложных процентов» весьма эффективна, поэтому нам бы хотелось, чтобы и остальные учащиеся нашего класса познакомились с ней и увидели ее эффективность, при решении более сложных задач по теме «Проценты».

Алимов Ш.А., Алгебра: учеб. для 7 кл. общеобразоват. учреждений / Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др е изд. – М.: Просвещение, – 207 с.: ил. Григорьева Т.П., Кузнецова Л.И., Перевощикова Е.Н., Пыжьянова А.Н. Пособие по элементарной математике: методы решения задач. Часть 2. 4 – е изд. – Н.Новгород: НГПУ, с. Иванова Т.А., Теоретические основы обучения математике в средней школе: Учебное пособие / Т.А. Иванова, Е.Н. Перевощикова, Т.П. Григорьева, Л.И. Кузнецова; Под ред. проф. Т.А. Ивановой. – Н.Новгород: НГПУ, – 320 с. Теляковский С.А., Алгебра 7 кл.: Учеб. для общеобразоват. учреждений. – 9-е изд. – М.: Просвещение, – 375 с.: ил. Шевкин А. В., Материалы курса «Текстовые задачи в школьном курсе математики»: Лекции 1 – 8. – М.: Педагогический университет «Первое сентября», с.