Математика Экономико-математические методы Векслер В.А., к.п.н.

Презентация:



Advertisements
Похожие презентации
Симплекс-метод. Сущность метода Симплекс-метод – универсальный метод решения задач линейного программирования. Суть метода: целенаправленный перебор.
Advertisements

Метод искусственного базиса. Сущность метода Если в системе ограничений, приведенной к каноническому виду, не удается сразу выделить базисные переменные,
Симплекс-метод. Сущность метода Первый шаг. Найти допустимое решение (план), соответствующее одной из вершин области допустимых решений. Второй.
Прямая и двойственная задачи и их решение симплекс-методом Лекции 8, 9.
Решение задачи линейного программирования методом последовательного улучшения плана ( Симплексный методом )
Математика Экономико-математические методы Векслер В.А., к.п.н.
Симплекс-метод Лекции 6, 7. Симплекс-метод с естественным базисом Симплекс –метод основан на переходе от одного опорного плана к другому, при котором.
МАТЕМАТИКА ДЛЯ ЭКОНОМИСТОВ Курс лекций для ЭМО-51, МО-51 филиала СПбГИЭУ в Вологде учебный год Автор: ЕГОРОВА.Е.Ю. Часть 9: ОСНОВЫ ОПТИМАЛЬНОГО.
Транспонирование матрицы переход от матрицы А к мат­рице А', в которой строки и столбцы поменялись местами с сохранением порядка. Матрица А' называется.
Двойственные задачи. Каждой задаче линейного программирования соответствует задача, называемая двойственной или сопряженной по отношению к исходной задаче.
1) Экономическая интерпретация ЗЛП: задача об оптимальном использовании ограниченных ресурсов, двойственная задача и ее экономическое содержание 2) Экономический.
Линейное программирование Двойственность в линейном программировании.
1 Стандартная задача Матричная форма записи § 1.4. Специальные виды задач ЛП максимизацииминимизации Обозначения.
1/ 23 Это развёрнутая форма записи Это развёрнутая форма записи Линейная целевая функция Линейные ограни- чения Условия неотрицательности переменных.
ТЕМА ЛЕКЦИИ : « МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ ». ПЛАН ЛЕКЦИИ 1. Определение матрицы, элементы матриц 2. Виды матриц 3. Линейные операции над матрицами.
Часть 2 Двойственные задачи Правила построения двойственных задач.
Лекция 4. Теория двойственности Содержание лекции: 1. Двойственная задача линейного программирования Двойственная задача линейного программирования Двойственная.
Двойственность линейного программирования. Правила построения двойственных задач: 1. Если в исходной задаче целевая функция исследуется на min, то в двойственной.
Симплекс-метод Симплексный метод – это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной.
Задачи линейного программирования Лекция 3. Линейное программирование Методы линейного программирования используют в прогнозных расчетах, при планировании.
Транксрипт:

Математика Экономико-математические методы Векслер В.А., к.п.н

Лекция «Решение задач линейного программирования»

Симплекс-метод – метод позволяющий найти решение любой задачи линейного программирования за обозримое число шагов.

Алгоритм симплекс-метода 1. Записываем данную задачу в исходную симплекс-таблицу. 2. Если все элементы оценочной строки симплексной таблицы неотрицательны, то исходный план является оптимальным. 3. Если в оценочной строке содержится отрицательный элемент, над которым в таблице нет положительных элементов, то целевая функция не ограничена сверху и задача не имеет решения.

Правило нахождения оценок Оценка для х j равна сумме произведений элементов данного столбца на соответствующие элементы первого столбца (С j - базисные) минус С j данного столбца (коэффициент над х j ).

Двойственные задачи Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой задаче.

Дадим определение двойственной задачи по отношению к общей задаче линейного программирования, состоящей, в нахождении максимального значения функции при условиях

Определение Задача, состоящая в нахождении минимального значения функции при условиях называется двойственной по отношению к общей задаче линейного программирования.

3. Число переменных в двойственной задаче равно числу ограничений в системе исходной задачи а число ограничений в системе двойственной задачи – числу переменных в исходной задаче. 4. Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе исходной задачи, а правыми частями в соотношениях системы двойственной задачи – коэффициенты при неизвестных в целевой функции исходной задачи.

Пример 3. Для производства трех видов изделий А, В и С используется три различных вида сырья. Каждый из видов сырья может быть использован в количестве, соответственно не большем 180, 210 и 244 кг. Нормы затрат каждого из видов сырья на единицу продукции данного вида и цена единицы продукции каждого вида приведены в таблице (следующий слайд). Определить план выпуска продукции, при котором обеспечивается ее максимальная стоимость, и оценить каждый из видов сырья, используемых для производства продукции. Оценки, приписываемые каждому из видов сырья, должны быть такими, чтобы оценка всего используемого сырья была минимальной.