Выпуклые многогранники Авторы: Гордиенко Юлия; Немчинова Анастасия 10 «б»

Презентация:



Advertisements
Похожие презентации
Ховаева Екатерина, 10 класс. Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется.
Advertisements

Моделирование правильных многогранников 10 классВыпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в.
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник- это тело, поверхность которого состоит.
Платоновы тела Автор работы: Синица Саша 10 в. Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники,
Правильные многогранники.
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Понятие правильного многогранника Босая Владлена 10 «А»
Аверьянова Е.10 «Б». МНОГОГРАННИК, геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются.
Трёхгранные и многогранные углы: Трёхгранным углом называется фигура образованная тремя плоскостями, ограни- ченными тремя лучами, исходящими из одной.
Правильные многогранники Выполнил: Ученик 10 б класса, школы 80 Гречкин Ярослав Учитель Шамсутдинова Р.Р.
Выполнила: Цуканова Светлана 10«А». Изучить определения и свойства правильных многогранников Выступить с сообщением в классе Получить положительную оценку.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
П РАВИЛЬНЫЕ М НОГОГРАННИКИ. ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом.
МОУ «Цветочинская СОШ» Выполнили: Нусс Татьяна Скляр Таисия Проект по геометрии.
Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер.
Многогранник - геометрическое тело, ограниченное плоскими многоугольниками. Плоские многоугольники называются гранями многогранника стороны многоугольника.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Правильные фигуры в геометрии Учитель математики Беленкова Ольга Александровна.
Транксрипт:

Выпуклые многогранники Авторы: Гордиенко Юлия; Немчинова Анастасия 10 «б»

Многогранник Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются рёбрами многогранника, а концы рёбер – вершинами многогранника. Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются рёбрами многогранника, а концы рёбер – вершинами многогранника. Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней. Выпуклый многогранник называется правильным, если все его грани – одинаковые правильные многоугольники и все его плоские углы при вершинах равны. Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней. Выпуклый многогранник называется правильным, если все его грани – одинаковые правильные многоугольники и все его плоские углы при вершинах равны. Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.

Тетраэдр Тетраэдр принадлежит к семейству платоновых тел, то есть правильных выпуклых многогранников. Тетраэдр - простейший многогранник, его гранями являются четыре равносторонних треугольника. Несмотря на свою простоту, тетраэдр - полноправный представитель семейства платоновых тел. Все его грани - одинаковые правильные многоугольники, все его многогранные углы равны. Тетраэдр - пространственный аналог плоского равностороннего треугольника, поскольку он имеет наименьшее число граней, отделяющих часть трехмерного пространства. Тетраэдр принадлежит к семейству платоновых тел, то есть правильных выпуклых многогранников. Тетраэдр - простейший многогранник, его гранями являются четыре равносторонних треугольника. Несмотря на свою простоту, тетраэдр - полноправный представитель семейства платоновых тел. Все его грани - одинаковые правильные многоугольники, все его многогранные углы равны. Тетраэдр - пространственный аналог плоского равностороннего треугольника, поскольку он имеет наименьшее число граней, отделяющих часть трехмерного пространства.

Куб Куб, или гексаэдр, принадлежит к семейству платоновых тел, то есть правильных выпуклых многогранников. Пожалуй, куб - наиболее известный и используемый многогранник. Этот многогранник имеет шесть квадратных граней, сходящихся в вершинах по три. Куб, или гексаэдр, принадлежит к семейству платоновых тел, то есть правильных выпуклых многогранников. Пожалуй, куб - наиболее известный и используемый многогранник. Этот многогранник имеет шесть квадратных граней, сходящихся в вершинах по три. Модель куба допускает эффектную трехцветную окраску, при которой противоположные (параллельные) грани окрашены в один цвет. Модель куба допускает эффектную трехцветную окраску, при которой противоположные (параллельные) грани окрашены в один цвет. Замечательное свойство куба, что в точности четыре его сечения являются правильными шестиугольниками - эти сечения проходят через центр куба перпендикулярно четырём его диагоналям. Замечательное свойство куба, что в точности четыре его сечения являются правильными шестиугольниками - эти сечения проходят через центр куба перпендикулярно четырём его диагоналям.

Октаэдр Октаэдр принадлежит к семейству платоновых тел, то есть правильных выпуклых многогранников. Гранями октаэдра являются восемь равносторонних треугольников, сходящихся в вершинах по четыре. Можно заметить, что ребра октаэдра образуют три квадрата, лежащих в экваториальных взаимно перпендикулярных плоскостях.

Додекаэдр Додекаэдр - представитель семейства платоновых тел, то есть правильных выпуклых многогранников. Додекаэдр имеет двенадцать пятиугольных граней, сходящихся в вершинах по три. Этот многогранник замечателен своими тремя звездчатыми формами. Додекаэдр - представитель семейства платоновых тел, то есть правильных выпуклых многогранников. Додекаэдр имеет двенадцать пятиугольных граней, сходящихся в вершинах по три. Этот многогранник замечателен своими тремя звездчатыми формами.

Икосаэдр Икосаэдр - представитель семейства платоновых тел, то есть правильных выпуклых многогранников. Икосаэдр имеет двадцать треугольных граней, сходящихся в вершинах по пять. Икосаэдр - представитель семейства платоновых тел, то есть правильных выпуклых многогранников. Икосаэдр имеет двадцать треугольных граней, сходящихся в вершинах по пять.

Итак, правильных многогранников ровно пять. А как определить в них количество рёбер, граней, вершин? Это нетрудно сделать для многогранников с небольшим числом рёбер, а как, например, получить такие сведения для икосаэдра? Знаменитый математик Л.Эйлер получил формулу В+Г- Р=2, которая связывает число вершин /В/, граней /Г/ и рёбер /Р/ любого многогранника. Простота этой формулы заключается в том, что она не связана ни с расстоянием, ни с углами.

Многогранник ГраниВершиныРёбра Тетраэдр 446 Куб 6812 Октаэдр 8612 Додекаэдр Икосаэдр

Спасибо за внимание!