ОТБОР КОРНЕЙ ПРИ РЕШЕНИИ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ МБОУ « Лицей города Абдулино »

Презентация:



Advertisements
Похожие презентации
Отбор корней при решении тригонометрических уравнений Автор: Дроздова Алла Владимировна, учитель математики высшей квалификационной категории МОУ «Гимназия.
Advertisements

Презентация к уроку (алгебра, 11 класс) по теме: Презентация к уроку "Решение тригонометрических уравнений с отбором корней на заданном отрезке"
Тригонометрические уравнения. Т р и г о н о м е т р и ч е с к и е у р а в н е н и я. Работа учеников 11 «А» класса гимназии 5 Научный руководитель, учитель.
Решение тригонометрических уравнений. Найти правильный ответ COS X = a COS X = 1 SIN X = a COS X = 0 COS X = - 1 SIN X = 1 SIN X = - 1 SIN X = 0 X = (-1)
ПРОСТЕЙШИЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. Тригонометрическими уравнениями обычно называют уравнения, в которых переменная содержится под знаками тригонометрических.
«Разминка» 1. Решение уравнения вида cos x=a при |a| > 1? 2. При каком значении а, уравнение cos x =a имеет решения ? 3. На какой оси откладывается значение.
1) Найдите 13 cos α + 1, если sin α = 5/13, π/2 α π 2) Упростить выражение 1 - tg х sin х cos х 5)Вычислите 3) Упростите выражение (1 + tg 2 α )(1 – cos.
ПРОСТЕЙШИЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ Работа ученицы 10 А класса Глоба Катарина.
ПРОСТЕЙШИЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ Работа ученицы 11 А класса Ильиной Ксении.
А). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку 1 2.
XIV районная научно - практическая конференция молодых исследователей « Юность - будущему » Исследовательская работа « Отбор корней в тригонометрических.
А). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку 2k arccos arccos 5 6 k+2 k+2 или.
1 3 - а). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку 13 arccos 1 3 arccos 1 3 k+2 k+2 или arccos 1 3.
1 3 - а). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку arccos 1 3 arccos 1) 3 k+2 k+2.
Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.
С 1 С 2 С 3. С 4 С 5 С 6 Арифметический Функционально- графический Алгебраический Геометрический.
Тригонометрия. Единичная окружность А В С D M K E H L P.
Решение тригонометрических уравнений Простейшие тригонометрические уравнения.
А). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку Нам будет удобно записать решение в виде двух множеств.
Тренировочная работа 1 Умножим обе части уравнения на (-1) Обозначим cos x = t, -1 t 1; сos x = 1,х = 2πn, n Є Z. Это есть решение нашего уравнения.
Транксрипт:

ОТБОР КОРНЕЙ ПРИ РЕШЕНИИ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ МБОУ « Лицей города Абдулино »

1. Вычислите: б) arccos в) arcsin 2 д) arccos е) arсctg а) arcsin(-1) г) arctg (не существует);

2. Решить уравнения: б) sin х = в) cost = 0; г) tg x = а) cos x = - 1;

1. Отбор корней в тригонометрическом уравнении с помощью числовой окружности. Пример 1. cos x + cos 2x – cos 3x = 1. Решение. cos x – cos 3x – (1 – cos 2x) = 0, 2sin x sin 2x – 2sin 2 x = 0, 2sin x (sin 2x – sin x) = 0,

Изобразим серии корней на тригонометрическом круге. 0 x y Видим, что первая серия ( ) включает в себя корни второй серии ( ), а третья серия ( ) включает в себя числа вида из корней первой серии ( ). 0

Пример 2. tg x + tg 2x – tg 3x = 0. Решение.

tg x · tg 2x · tg 3x = 0; Изобразим ОДЗ и серии корней на числовой окружности. 0 x y 0 Из второй серии корней ( ) числа вида не удовлетворяют ОДЗ, а числа вида. входят в третью серию ( ) Первая серия ( ) так же входит в третью серию корней ( ), поэтому ответ можно записать одной формулой.

Пример 3. Решение. Иногда случается, что часть серии входит в ответ, а часть нет. Нанесем на числовую окружность все числа серии и исключим корни, удовлетворяющие Оставшиеся решения из серии корней можно объединить в формулу 0 x y 0 условию

2. Отбор корней в тригонометрическом уравнении алгебраическим способом Пример 1. Решение. Поскольку наибольшее значение функции y = cos t равно 1, то уравнение равносильно системе Решением уравнения является пересечение серий, то есть нам надо решить уравнение Получаем Итак,

Пример 2. Решение. Решением уравнения является пересечение серий, то есть нам надо решить уравнение где целое число. тогда Пусть Итак,

3. Отбор корней в тригонометрическом уравнении с некоторыми условиями Пример 1. Найти корни уравнения sin 2x = cos x | cos x |, удовлетворяющие условию x [0; 2π]. cos x (2sin x - | cos x |)=0; Решение. sin 2x = cos x | cos x |; 2sin x· cos x - cos x | cos x |=0;

0 y x 0 y x cos x 0cos x < 0 Условию удовлетворяют числа (для первой системы) и (для второй системы). Найдём решение систем с помощью числовых окружностей:

Пример 2. Найти все решения уравнения принадлежащие отрезку Решение. ОДЗ: cos 3x 0; Отметим ОДЗ на тригонометрическом круге: 0 y x Отрезку принадлежит только один промежуток из ОДЗ, а именно Решим уравнение и выберем корни, принадлежащие этому промежутку: 1 + sin 2x = 2cos 2 3x; sin 2x = cos 6x; sin 2x - cos 6x=0;

Выберем корни, удовлетворяющие условию задачи. Из первой серии: Следовательно n=2, то есть Из второй серии: Следовательно n=5, то есть

Пример 3. Найти все корни уравнения которые удовлетворяют условию Решение. 10sin 2 x = – cos 2x + 3; 10sin 2 x = 2sin 2 x – 1 + 3, 8sin 2 x = 2; 0 y x С помощью числовой окружности получим:

Выберем корни, удовлетворяющие условию задачи. Из первой серии: Следовательно n=0 или n=1, то есть Из второй серии: Следовательно n=0 или n=1, то есть