Тема уроку. Властивість точки, рівновіддаленої від вершин многокутника ©

Презентация:



Advertisements
Похожие презентации
Геометричні місця точок Властивість точки, рівновіддаленої від вершин многокутника Творчий проект Фотенюк Надії.
Advertisements

Коло, описане навколо трикутника. Коло, вписане в трикутник «Серед рівних розумом - за однакових умов – переважає той, хто знає геометрію» Блез Паскаль.
Учитель математики гімназії 31 Євтух Т.А. Коло. Колом називається геометрична фігура, яка складається з усіх точок, рівновіддалених від заданої точки.
Використання теореми про три перпендикуляри ( ТТП) Задачі на обчислення Автор: вчитель математики Карлівської ЗОШ 3 Ігнатова Ю.І.
Геометричні місця точок Властивість точки, рівновіддаленої від сторін многокутника Творчий проект Новоренської Маряни.
Тема уроку. Розв язування задач з теми « Об єм піраміди »
Формули для радіусів описаних та вписаних кіл правильних многокутників Геометрія 9 клас Правильні многокутники.
11 клас Поговоримо про циліндр : Із стопки картону взяли лист і вирізали круг. Дістали циліндр з дуже малою висотою. Як практично визначити його висоту.
Геометрія 9 клас Розділ 2. Правильні многокутники.
Пiрамiди. Геометрiя 10 класс
Геометрія 9 клас Розділ 3. Декартові координати на площині.
Пряма називається перпендикулярною до площини, якщо вона перетинає цю площину, та перпендикулярна до кожної прямої, що лежить у цій площині і проходить.
КУТИ В ПРОСТОРІ. РОБОТА БІЛОЇ Н. С. Вчителя математики НВК м. Славути.
{ Піраміда Означення та властивості. ПІРАМІДОЮ називається многогранник, одна грань якого – довільний многокутник, а інші грані – трикутники, що мають.
Відстань між мимобіжними прямими Способи розвязування задач Творчий проект Башуцької Оксани.
Геометрія 9 клас Розділ 2. Правильні многокутники.
Геометрія 11 клас гуманітарний профіль Піраміда. Правильна піраміда. Переріз піраміди.
Дайте відповіді на питання: Варіанти відповідей: А) Б) В) 0 90 Г) Скільки прямих, перпендикулярних до даної прямої, можна провести.
Повторення. Кут між прямими a b Нехай - той з кутів, який не перебільшує будь – який з трьох інших кутів. Тоді говорять, що кут між прямими, які перетинаються.
- коло коло це множина всіх точок площини, рівновіддалених від фіксованої точки. Ця точка є центром кола, а відстань – радіусом кола. ( АО=СО=ВО=DO=SO=FO)
Транксрипт:

Тема уроку. Властивість точки, рівновіддаленої від вершин многокутника ©

З точки S проведено перпендикуляр SO та похилі SA і SB. SA=13, SB=20. Довжина проекції похилої AS дорівнює 5 см. Знайти відстань від точки S до площини і довжину проекції похилої SB. S O A B Розв язання 16 SO=? OB=? ©

A B C D E S SA=SB=SC=SD=SE – похилі O OA=OB=OC=OD=OE – проекції O – центр описаного кола S A B C O Дано трикутник ABC і точку S. Якщо SA=SB=SC, … … то OA=OB=OC… … і точка О – центр описаного кола. Перпендикуляр з точки, рівновіддаленої від вершин многокутника, падає в центр описаного кола ! ©

A B C O Гострокутний трикутник A B C O Тупокутний трикутник A B C O Прямокутний трикутник Центр описаного кола – на середині гіпотенузи ! Для будь - якого трикутника : a b c α β γ O a A B C a a Правильний трикутник O a a a a A B C D Правильний чотирикутник O a Правильний шестикутник ©

M AB C <ABC=90 0 ; MA=MB=MC. Опустіть перпендикуляр з точки М на площину трикутника АВС. O О – середина гіпотенузи ©

M AB C D О ABCD – квадрат, MA=MB=MC=MD=5 см Знайти : відстань від точки М до площини квадрата. Розв язання Для квадрата Отже, OA=OB=OC=OD=4 З трикутника MOB: 4 ©

M AB C MA=MB=MC=13 AB=BC=AC= Знайти відстань від точки М до площини трикутника. Розв язання О Для рівностороннього трикутника Отже, ОА = ОВ = ОС = З трикутника МОС : ©

S AB C D О ABCD – квадрат ; Знайти : SA, SB, SC, SD ©

S AB C О ©