Учитель математики МОУ «СОШ 42»г. Воркуты Эркенова Г. Б.

Презентация:



Advertisements
Похожие презентации
Элементы теории вероятностей. 9 класс. ТЕМА Еремина Наталья Игоревна Учитель математики МОУ СОШ 3 г. Апатиты.
Advertisements

Типы случайных событий и действия над ними. Теория вероятностей, 9 класс.
Типы случайных событий и действия над ними. Пособие для учащихся 5-11 классов. Брезгина Людмила Дмитриевна учитель математики МКОУ СОШ д. Быданово Белохолуницкого.
Тема урока: «Достоверные, невозможные и случайные события».
События. Виды событий. Цель урока: Изучение понятий «событие», «случайное событие», « совместные и несовместные события», «равновозможные события, изучить.
Тест по теме « Достоверные, недостоверные или случайные события»
Эксперименты со случайными исходами. М-6. Эксперименты со случайными исходами - это самые разные испытания, наблюдения, измерения, результаты которых.
События Случайные события При научном исследовании различных процессов часто приходится встречаться с явлениями, которые принято называть случайными. Случайное.
Урок по алгебре в 9 классе ГБОУ СОШ 245 Учитель Савина Л.Н. Типы случайных событий и действия над ними.
Элементы теории вероятностей для основной и средней школы.
Автор: Яковлева Екатерина. Об авторе Ученица 8 «А» средней школы 427. Яковлева Екатерина Александровна Дата рождения года. Проект по Теории.
Введение в вероятность. Презентация подготовлена для учащихся 5 класса в качестве учебного пособия при изучении раздела «Введение в вероятность»
Шепенко Г.Н.- учитель математики Берновской СОШ Старицкого р-на Тверской области.
Событие, противоположное событию А – событие, которому благоприятствуют все элементарные события, не благоприятствующие событию А. Обозначение: А Если.
Тема 2 Операции над событиями. Условная вероятность План: 1.Операции над событиями. 2.Условная вероятность.. Если и, то Часто возникает вопрос: насколько.
Операции над событиями Алгебраические действия с вероятностями событий.
Случайные события. Событие Всякий результат или исход испытания называется событием. Обозначение события: А,В,С и т.п.
Блок 2.Простейшие правила и формулы вычисления вероятностей Выполнила: учитель МОУ Вохомская СОШ Адеева Г.В.
ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТИ.. РЕБУС «СОБЫТИЕ»
Основные понятия «Теории вероятностей» Определения и примеры.
Транксрипт:

Учитель математики МОУ «СОШ 42»г. Воркуты Эркенова Г. Б.

Событие называется случайным если при одних и тех же условиях оно может как произойти, так и не произойти. Этот комплекс условий называется случайным опытом или случайным экспериментом. Случайным считается событие, связанное со случайным экспериментом. Пример. Событие «При подбрасывании игрального кубика выпадет 5 очков.» Случайный эксперимент – подбрасывание кубика. Событие называется случайным если при одних и тех же условиях оно может как произойти, так и не произойти. Этот комплекс условий называется случайным опытом или случайным экспериментом. Случайным считается событие, связанное со случайным экспериментом. Пример. Событие «При подбрасывании игрального кубика выпадет 5 очков.» Случайный эксперимент – подбрасывание кубика.

Типы случайных событий Достоверное событие Невозможное событие Достоверное событие – это событие, которое обязательно происходит при каждом проведении рассматриваемого эксперимента. Этому событию соответствует всё множество исходов данного эксперимента. Пример. Событие «При бросании кубика выпало не более 6 очков» Невозможное событие – это событие, которое никогда не может произойти при проведении данного эксперимента. Этому событию соответствует пустое множество исходов данного эксперимента. Пример. Событие «При бросании кубика выпало 7 очков»

Для каждого из описанных событий определите, каким оно является: невозможным, достоверным или случайным. 1. Из 25 учащихся класса двое справляют день рождения а) 30 января; б) 30 февраля. 2. Случайным образом открывается учебник литературы и находится второе слово на левой странице. Это слово начинается: а) с буквы «К»; б) с буквы «Ъ». Для каждого из описанных событий определите, каким оно является: невозможным, достоверным или случайным. 1. Из 25 учащихся класса двое справляют день рождения а) 30 января; б) 30 февраля. 2. Случайным образом открывается учебник литературы и находится второе слово на левой странице. Это слово начинается: а) с буквы «К»; б) с буквы «Ъ».

3. Сегодня в Сочи барометр показывает нормальное атмосферное давление. При этом: а) вода в кастрюле закипела при температуре 80º С; б) когда температура упала до -5º С, вода в луже замёрзла. 4. Бросают две игральные кости: а) на первой кости выпало 3 очка, а на второй – 5 очков; б) сумма выпавших на двух костях очков равна 1; в) сумма выпавших на двух костях очков равна 13; г) на обеих костях выпало по 3 очка; д) сумма очков на двух костях меньше Сегодня в Сочи барометр показывает нормальное атмосферное давление. При этом: а) вода в кастрюле закипела при температуре 80º С; б) когда температура упала до -5º С, вода в луже замёрзла. 4. Бросают две игральные кости: а) на первой кости выпало 3 очка, а на второй – 5 очков; б) сумма выпавших на двух костях очков равна 1; в) сумма выпавших на двух костях очков равна 13; г) на обеих костях выпало по 3 очка; д) сумма очков на двух костях меньше 15.

5. Вы открыли книгу на любой странице и прочитали первое попавшееся существительное. Оказалось, что: а) в написании выбранного слова есть гласная буква; б) в написании выбранного слова есть буква «О»; в) в написании выбранного слова нет гласных букв; г) в написании выбранного слова есть мягкий знак. 5. Вы открыли книгу на любой странице и прочитали первое попавшееся существительное. Оказалось, что: а) в написании выбранного слова есть гласная буква; б) в написании выбранного слова есть буква «О»; в) в написании выбранного слова нет гласных букв; г) в написании выбранного слова есть мягкий знак.

Противоположное событие (по отношению к рассматриваемому событию А) - это событие Ā, которое не происходит, если А происходит, и наоборот. Пример. Событие А «выпало четное число очков» и Ā «выпало нечётное число очков» при бросании игрального кубика. Два события А и В называются совместными, если они могут произойти одновременно, при одном исходе эксперимента, и несовместными, если они не могут произойти одновременно ни при одном исходе эксперимента (т.е. в соответствующих им множествах экспериментов нет одинаковых (общих) исходов). Пример. События «Брошена игральная кость. На верхней грани оказалось 6 очков; чётное число очков» - совместные. События «Брошена игральная кость. На верхней грани оказалось 6 очков; 5 очков» - несовместные. Два события А и В считаются независимыми, если вероятность каждого из них ( Р(А) и Р(В) ) не зависит от наступления или не наступления второго. Противоположное событие (по отношению к рассматриваемому событию А) - это событие Ā, которое не происходит, если А происходит, и наоборот. Пример. Событие А «выпало четное число очков» и Ā «выпало нечётное число очков» при бросании игрального кубика. Два события А и В называются совместными, если они могут произойти одновременно, при одном исходе эксперимента, и несовместными, если они не могут произойти одновременно ни при одном исходе эксперимента (т.е. в соответствующих им множествах экспериментов нет одинаковых (общих) исходов). Пример. События «Брошена игральная кость. На верхней грани оказалось 6 очков; чётное число очков» - совместные. События «Брошена игральная кость. На верхней грани оказалось 6 очков; 5 очков» - несовместные. Два события А и В считаются независимыми, если вероятность каждого из них ( Р(А) и Р(В) ) не зависит от наступления или не наступления второго.

1. Ниже перечислены разные события. Укажите противоположные им события. а) мою новую соседку по парте зовут или Таня, или Аня; б) явка на выборы была от 40% до 47%; в) из пяти выстрелов в цель попали хотя бы два; г) на контрольной я не решил, как минимум, три задачи из пяти. 2. Назовите события, для которого противоположным является такое событие: а) на контрольной работе больше половины класса получили пятёрки; б) все семь пулек в тире у меня попали мимо цели; в) в нашем классе все умные и красивые; г) в кошельке у меня есть или три рубля одной монетой, или три доллара одной бумажкой. 1. Ниже перечислены разные события. Укажите противоположные им события. а) мою новую соседку по парте зовут или Таня, или Аня; б) явка на выборы была от 40% до 47%; в) из пяти выстрелов в цель попали хотя бы два; г) на контрольной я не решил, как минимум, три задачи из пяти. 2. Назовите события, для которого противоположным является такое событие: а) на контрольной работе больше половины класса получили пятёрки; б) все семь пулек в тире у меня попали мимо цели; в) в нашем классе все умные и красивые; г) в кошельке у меня есть или три рубля одной монетой, или три доллара одной бумажкой.

3. Событие А – в результате стрельбы по мишени хотя бы одна пуля попала в цель. Что означает событие Ā? 4. В сыгранной Катей и Славой партии в шахматы: а) Катя выиграла; Слава проиграл; б) Катя проиграла; Слава выиграл. 5. Укажите какие из описанных пар событий являются совместными, а какие несовместными. Из набора домино вынута одна костяшка, на ней: а) одно число очков больше 3, другое число 5; б) одно число не меньше 6, другое число не больше 6; в) одно число 2, сумма обоих чисел равно 9; г) оба числа больше 3, сумма чисел равна Событие А – в результате стрельбы по мишени хотя бы одна пуля попала в цель. Что означает событие Ā? 4. В сыгранной Катей и Славой партии в шахматы: а) Катя выиграла; Слава проиграл; б) Катя проиграла; Слава выиграл. 5. Укажите какие из описанных пар событий являются совместными, а какие несовместными. Из набора домино вынута одна костяшка, на ней: а) одно число очков больше 3, другое число 5; б) одно число не меньше 6, другое число не больше 6; в) одно число 2, сумма обоих чисел равно 9; г) оба числа больше 3, сумма чисел равна 7.

6. Из событий составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий: а) идёт дождь; б) на небе нет ни облачка; в) наступило лето. 7. Из событий составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий: а) наступило утро; б) сегодня по расписанию 6 уроков; в) сегодня первое января; г) температура воздуха в Москве +20º С

8. Совместны ли следующие события? а) А – у случайным образом составленного квадратного уравнения есть действительные корни; В – дискриминант уравнения отрицателен; б) А – у случайным образом составленного квадратного уравнения нет действительных корней; В – дискриминант уравнения не положителен. 9. Из полной колоды карт вынимается одна карта. Выяснить, являются совместными или несовместными события: а) вынута карта красной масти и вынут валет; б) вынут король и вынут туз.

Действия над случайными событиями Суммой двух случайных событий А и В называют новое случайное событие А+В, которое происходит, если происходят либо А, либо В, либо А и В одновременно. Событию А+В соответствует объединение (сумма) множеств исходов, соответствующих событиям А и В. Произведением двух случайных событий А и В называется новое случайное событие АxВ, которое происходит только тогда, когда происходят события А и В одновременно. Событию АxВ соответствует пересечение множеств исходов, соответствующих событиям А и В.

1.Опишите, в чём состоит сумма следующих несовместных событий: 2.а) учитель вызвал к доске ученика (событие А), ученицу (событие В); б) родила царица в ночь, не то сына (событие А), не то дочь (событие В); в) случайно выбранная цифра меньше 5 (событие А), больше 6 (событие В); г) из 10 выстрелов в цель попали ровно 7 раз (событие А), не более 6 раз (событие В). Решение задач