Усечённая пирамида Над презентацией работали: Киселёва Анна Коскина Юля Новикова Яна.

Презентация:



Advertisements
Похожие презентации
А1А1 А2А2 А3А3 АnАn В1В1 В2В2 В3В3 ВnВn S Многогранник, гранями которого являются n-угольники А 1 А 2 А 3...А n и В 1 В 2 В 3...В n, расположенные в параллельных.
Advertisements

Многогранник, составленный из n-угольника A 1 A 2 … A n и n треугольников, называется пирамидой. Многоугольник A 1 A 2 … A n называется основанием, а.
Пирамида. Построение пирамиды и её плоских сечений. Усечённая пирамида. Правильная пирамида. Презентацию подготовила Ученица 11 класса Алаторцева Екатерина.
ПИРАМИДА Автор: Димитриева Анастасия. α А1А1 А2А2 АnАn P H Определение Пирамида – многогранник, составленный из n - угольника А 1 А 2 …А n и n треугольников.
ПИРАМИДА. ПРАВИЛЬНАЯ ПИРАМИДА. УСЕЧЕННАЯ ПИРАМИДА.
ПИРАМИДА
A1A1 P α A2A2 A3A3 AnAn A4A4 Среди изображенных тел выберите номера тех, которые являются пирамидами.
Тема урока: «УСЕЧЕННАЯ ПИРАМИДА. План. 1.Определение усечённой пирамиды. 2.Элементы усечённой пирамиды. 3.Вывод формулы площади боковой поверхности правильной.
10 класс ПИРАМИДА слайд-лекция. 10 класс Слово «пирамида» в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые.
Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, -
Усеченная пирамида
Пирамида высотой Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотойпирамиды А 1 А 1 А 2 А 2 АnАn Р А 3 А 3 Многогранник,
Пирамида Многогранник, составленный из многоугольника A 1 A 2 …A n и n треугольников называется n-угольной пирамидой.
Усеченная пирамида. Часть пирамиды, лежащая между основанием и параллельным основанию сечением, называется усеченной пирамидой. Боковые грани усеченной.
«Усеченная пирамида» Выполнила: Мечкаева Алёна, ученица 11 «А» класса.
ПИРАМИДА. МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Автор: Карсанова Алина, ученица 10Б класса.
Презентация по геометрии на тему. Выполнила: ученица 10 класса А средней школы 41 Сонина Маргарита.
УСЕЧЕННАЯ ПИРАМИДА Плоскость параллельная основанию пирамиды, разбивает её на два многогранника. Один из них является пирамидой, а другой называется усечённой.
апофема высота боковой грани правильной пирамиды, проведённая из её вершины; боковые грани треугольники, сходящиеся в вершине; боковые ребра общие стороны.
Презентация по геометрии Тема: «Пирамида». Определение Пирамидой называется многогранник, который состоит из плоского многоугольника --- основания пирамиды,
Транксрипт:

Усечённая пирамида Над презентацией работали: Киселёва Анна Коскина Юля Новикова Яна

Плоскость, параллельная плоскости основания пирамиды и пересекающая пирамиду, отсекает от нее подобную пирамиду. Другая часть пирамиды представляет собой многогранник, который называют усеченной пирамидой.

На рисунке изображена усеченная пирамида A1А2А3А4В1В2В3В4. Грани усеченной пирамиды, лежащие в параллельных плоскостях (A1А2А3А4) и (B1В2В3В4), называют основаниями усеченной пирамиды, остальные грани называют боковыми гранями. Основания усеченной пирамиды представляют собой подобные многоугольники, боковые грани - трапеции.

Перпендикуляр, проведенный из какой – нибудь точки одного основания к плоскости другого основания, называется высотой усеченной пирамиды

Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания правильной усеченной пирамиды – правильные многоугольники, а боковые грани – равнобедренные трапеции. Высоты этих трапеций называются апофемами.

Правильная усеченная пирамида также как и обычная правильная пирамида имеет особенности: В правильной усеченной n-угольной пирамиде все боковые ребра равны между собой. Все боковые грани правильной усеченной n-угольной пирамиды суть равные равнобедренные трапеции (углы при основаниях равнобедренной трапеции равны), поэтому: 1. В правильной усеченной n-угольной пирамиде все плоские углы при основаниях равны. 2. В правильной усеченной n-угольной пирамиде все двугранные углы при основаниях равны. 3. В правильной усеченной n-угольной пирамиде все двугранные углы при боковых ребрах равны.

Теорема: Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему S бок= ½(P+P´) h где P и P´ периметры основания, h – высота боковой грани

Объем усеченной пирамиды: V = 1/3H(S +SS´ + S´) Где S и S´ - площади оснований, H - высота