На рисунке изображен график функции у =f(x) и касательная к нему в точке с абсциссой х 0. Найдите значение производной в точке х 0. х х 0 х 0 у острый.

Презентация:



Advertisements
Похожие презентации
На рисунке изображен график функции у =f(x) и касательная к нему в точке с абсциссой х 0. Найдите значение производной в точке х Подумай! Верно!
Advertisements

X 0 1 y xoxo y=f(x) к а с а т е л ь н а я f / (x o )=-5 f / (x o )=-3 f / (x o )=1 f / (x o )=-1 f / (x o )=k.
Задачи на нахождение значения производной функции в точке (используя график функции) (прототипы заданий В 9)
8 2 На рисунке изображены график функции у =f(x) и касательная к этому графику, проведенная в точке с абсциссой х 0. Найдите значение производной функции.
Умения выполнять действия с функциями (геометрический и физический смысл производной)
ЛАБОРАТОРНАЯ РАБОТА 1 Геометрический смысл производной.
B8B8B8B8 Математика Задача – 2010 ЕГЭ Презентация по материалам рабочей тетради «Задача В 8» авторов И.В. Ященко, П.И. Захарова.
Геометрический смысл производной на уроке и в заданиях ЕГЭ.
Геометрический смысл производной в заданиях КИМ ЕГЭ.
Геометрический смысл производной Составила Авдеева Т.Н.- учитель математики БМОУ «Торбеевская средняя общеобразовательная школа 1»
В-8 х у Указания к выполнению задания тангенса угла Решение задачи состоит в вычислении углового коэффициента касательной, т.е. тангенса угла, который.
Дана непрерывная функция y=f(x), имеющая в точке А ( x о ; f(x о ) ) касательную. Угловой коэффициент касательной к графику функции y=f(x) в точке (x о.
Решение задания В8 Основные типы заданий. Тип задачи (дано. Найти) План решенияпример Дан график производной, найти количество точек, в которых касательная.
Функция y=f(x) задана на отрезке [a;b]. На рисунке изображён график её производной y=f(x). Определите количество точек графика функции y=f(x), в которых.
Готовимся к ЕГЭ. f(x) f / (x) x На рисунке изображен график производной функции у =f (x), заданной на промежутке (- 8; 8). Исследуем свойства графика.
Производные простых функций (х – независимая переменная) Производные сложных функций (u=u(х) – любая дифференцируемая функция)
Задания, связанные с касательной к графику функции Галкин Сергей Михайлович, учитель математики МБОУ «Гимназия 41», г. Новоуральск, Свердловская обл. smgal.ru.
Уравнение касательной. Ответьте на вопрос: *Графиком какой функции является прямая? ( линейной) *Уравнение прямой? ( y= k x + b) *Как называется коэффициент.
3). Исключим точки, в которых производная равна 0 (в этих точках касательная параллельна оси Ох) В 8. В 8.
Производная и ее применение Работу выполнили ученики 10 класса МОУ Петровской сош.
Транксрипт:

На рисунке изображен график функции у =f(x) и касательная к нему в точке с абсциссой х 0. Найдите значение производной в точке х 0. х х 0 х 0 у острый положительно 1). Угол, который составляет касательная с положительным направлением оси Ох, острый. Значит, значение производной в точке х 0 положительно. Решение: 2). Найдем тангенс этого угла. Для этого подберем треугольник с катетами-целыми числами. Этот треугольник не подходит. Можно найти несколько удобных треугольников, например,…. 3). Найдем тангенс угла – это отношение 9:6. Ответ: 2 3 O 9 6

На рисунке изображен график функции у =f(x) и касательная к нему в точке с абсциссой х 0. Найдите значение производной в точке х 0. х х 0 х 0 у O тупой отрицательно 1). Угол, который составляет касательная с положительным направлением оси Ох, тупой. Значит, значение производной в точке х 0 отрицательно. Решение: 2). Найдем тангенс смежного угла. Для этого подберем треугольник с катетами-целыми числами. Этот треугольник не подходит. Можно найти несколько удобных треугольников. 3). Найдем тангенс угла – это отношение 3:4. Ответ: 4 3 – 3 4

На рисунке изображен график функции у =f(x) и касательная к нему в точке с абсциссой х 0. Найдите значение производной в точке х 0. х х 0 х 0 у O Решать подобные задания можно другим способом. у = kx + b Уравнение прямой у = kx + b. k В этом уравнении угловой коэффициент k - искомая величина. Решение: Ответ: 2 1 – f / (x o )=k k=tgα у = kх + b Подставим координаты известных точек в уравнение прямой. (-2; -4) (2; -6) – 4 = – 2k + b. – 6 = 2k + b. – – 2 = 4k k = 2 1 – : 4