«Применение производной и ознакомление с её прикладной частью ». «Применение производной и ознакомление с её прикладной частью ». Чихина Анастасия, Спиридонова.

Презентация:



Advertisements
Похожие презентации
«Применение производной и ознакомление с её прикладной частью ». «Применение производной и ознакомление с её прикладной частью ». 10 « а» Выполнила: Овчинникова.
Advertisements

ПРОЕКТ ученицы 11 «Б» класса МОУ Алексеевской СОШ Рябовой Светланы Под руководством Плешаковой О.В.
Тема: Производная Задачи, приводящие к понятию производной У Х О.
«Определение производной. Геометрический смысл производной. Приложение производной к решению задач » Выполнили: Лысова О.Н. Кенжимбетова Г.У. Кенжимбетова.
Производная. Исторические сведения Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач: Дифференциальное.
«Производная и ее применение в алгебре, геометрии».
Производная – одно из фундаментальных понятий математики. Оно возникло в XVII веке в связи с необходимостью решения ряда задач из физики, механики и математики,
Обобщающий урок по теме: «Производная и ее применение» Тема урока: Разработала: учитель математики Кушниренко Домникия Николаевна 2012 г.
Урок состязание: «Вычисление производной». «Дорогу осилит идущий, а математику – мыслящий» Томас Эдисон «Дорогу осилит идущий, а математику – мыслящий»
Виноградова Татьяна Игоревна. учитель математики школа 26 Невский район.
Применения производной к исследованию функции
История дифференциального исчисления. Определение и использование Раздел математики который изучает производные функции и их применения, называется дифференциальным.
11 класс учитель Чепаева М. И. МОУ «Пичпандинская средняя школа»
Ребята, отгадайте ключевое слово урока С ее появлением математика перешагнула из алгебры в математический анализ; 2) Ньютон назвал ее «флюксией» и обозначал.
«Музыка может возвышать или умиротворять душу, живопись – радовать глаз, поэзия – пробуждать чувства, философия – удовлетворять потребности разума, инженерное.
Отгадайте ключевое слово урока 1) С ее появлением математика перешагнула из алгебры в математический анализ; 2) Ньютон назвал ее «флюксией» и обозначал.
Применение производной в науке и технике Выполнил студент группы И 3-14 Андреев Роман.
На тему «Логарифмы». Вычислить: log = 49 log 7 5 = log 5 log 4 log 3 81= 8 log = = Вычислить: = =0.
Исторические сведения В конце 17 века великий английский учёный Исаак Ньютон доказал что путь и скорость связаны между собой формулой: V(t)=S(t) и такая.
ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ. В моей презентации речь пойдёт о понятии производной, правилах её применения в науке и технике и о решении задач в этой области.
Транксрипт:

«Применение производной и ознакомление с её прикладной частью ». «Применение производной и ознакомление с её прикладной частью ». Чихина Анастасия, Спиридонова Елена. 10 « а» Учитель: Александрова Татьяна Николаевна

Цель работы: Закрепление изученного материала по теме «Производная» и ознакомление с её прикладной частью.

План работы: 1.Исследование функции на монотонность 2.Касательная к графику. 3.Применение производной в математике 4.Применение производнойв экономике

Прил. 1

Прил. 2

Исторические сведения Производная – одно из фундаментальных понятий математики. Оно возникло в XV11 веке. Независимо друг от друга И.Ньютон и Г.Лейбниц разработали основные элементы дифференциального исчисления. «Метод флюкций». Так Ньютон назвал свою работу, посвященную основным понятиям математического анализа. Функцию Ньютон назвал флюентой, а производную – флюкцией. Обозначения Ньютона для производных - х* (с точкой) и у* - сохранились в физике до сих пор. Исчисление, созданное Ньютоном и Лейбницем, получило название дифференциального исчисления. С его помощью был решен целый ряд задач теоретической механики, физики и астрономии.

Будем считать, что рассматриваемая функция y=f(x) определена и дифференцируема в каждой точке отрезка a x b. функция f(x) возрастает (или убывает) в промежутке a

Решение: Чтобы применить признаки возрастания и убывания функции, найдем производную данной функции и определим значения х, при которых она положительна или отрицательна: у' = Зх 2 2х 8. Корни трехчлена: x 1 = - 4/3, x 2 =2. Отсюда: у' =3(х+4/3)(х-2). возрастает убывает возрастает + -4/ Ответ: функция возрастает в промежутках - < x < -4/3 и 2 < x < + и убывает в промежутке 4/3 < х

Вообразим, что на кривой АВ точка М неограниченно приближается к неподвижной точке С, секущая СМ при этом вращается вокруг точки С. Может случиться, что, независимо от того, будет ли точка М приближаться к С в направлении от A к С или от В к С (на черт точка M'), существует одна и та же прямая СТ предельное положение секущей СМ. Касательная к графику AC M B γ Y 0 B A M T C M X φα

Определение. Прямая СТ, предельное положение секущей СМ, называется касательной к кривой в точке С. Точка С называется точкой прикосновения или касания. Если к линии y=f(x) в точке х имеется касательная, непараллельная Оу, то угловой коэффициент касательной равен значению производной f '(х), в точке х. Если функция y=f(x) имеет определенную производную в точке х, то: 1) в этой точке имеется касательная к графику функции, 2) угловой коэффициент ее равен значению производной f '(x) в точке х.

Производная в математике показывает числовое выражение степени изменений величины, находящейся в одной и тоже точке, под влиянием различных условий. Формула производной встречается нам ещё в 15 веке. Великий итальянский математик Тартальи, рассматривая и развивая вопрос - на сколько зависит дальность полёта снаряда от наклона орудия - применяет её в своих трудах. Формула производной часто встречается в работах известных математиков 17 века. Её применяют Ньютон и Лейбниц. Посвящает целый трактат о роли производной в математике известный учёный Галилео Галилей. Затем производная и различные изложения с её применением стали встречаться в работах Декарта, французского математика Роберваля и англичанина Грегори. Большой вклад по изучению производной внесли такие умы, как Лопиталь, Бернулли, Лангранж и др. Применение производной в математике

Применение производных в экономике Формулы производной широко применимы в настоящее время, например, в экономическом анализе. Они помогают точно вывести данные об изменении экономики государства. Используя их, можно совершенно точно просчитать, как можно увеличить доход государства и за счёт чего он может быть увеличен. Формула позволяет увидеть планируемые действия, понять их необходимость, тем самым, помогая экономистам в составлении успешных бизнес-планов.

Заключение Музыка может возвышать или умиротворять душу, Живопись – радовать глаз, Поэзия – пробуждать чувства, Философия – удовлетворять потребности разума, Инженерное дело – совершенствовать материальную сторону жизни людей, А математика способна достичь всех этих целей.