1 Уроки физики в 11 классе. 3 Лоренц Хендрик Антон Лоренц ввел в электродинамику представления о дискретности электрических зарядов и записал уравнения.

Презентация:



Advertisements
Похожие презентации
1 2 Лоренц Хендрик Антон Лоренц ввел в электродинамику представления о дискретности электрических зарядов и записал уравнения для электромагнитного поля,
Advertisements

Источником магнитного поля являются движущиеся заряды.
Сила Лоренца Сила Лоренца Модуль силы Лоренца. Модуль силы Лоренца. Направление силы Лоренца Направление силы Лоренца Правило левой руки Правило левой.
Магнетизм Взаимодействие проводника с током и магнитной стрелки Магнитное взаимодействие токов.
Магнитное поле. Взаимодействия между проводниками с током, то есть взаимодействия между движущимися электрическими зарядами, называют магнитными.
Движение частицы в магнитном поле Выполнил ученик 9 «М» класса Кузнецов Павел.
Сила Лоренца Сила Лоренца – сила, с которой магнитное поле действует на движущуюся электрически заряженную частицу. 1) Точка приложения – движущаяся заряженная.
Презентация учителя физики гимназии 1 г. Мытищи Чумаченко Г.А. Сила Лоренца.
Выполнил: Студент I курса Меркулов Александр. Закон Ампера I1I1 I2I2 d F.
Величина и направление На заряженную частицу, находящуюся в магнитном поле, со стороны поля действует сила Лоренца: F л = B q v sinα Эта сила, не изменяя.
Какими свойствами обладает магнитное поле? Что такое сила Ампера? Как рассчитать силу Ампера? Что такое электрический ток?
Отклонение магнитной стрелки при замыкании электрической цепи говорит о том, что Вокруг проводника с током существует магнитное поле. На него – то и реагирует.
Урок физики в 11 классе Правило левой руки. Используя правило левой руки можно определять направление Силы Ампера Силы Лоренца.
Кочкина Е.Г. Учитель физики МАОУ «МСОШ 20» г.Миасс.
Сила Ампера, действующая на отрезок проводника длиной Δ l с силой тока I, находящийся в магнитном поле B, F А = IBΔl sin α может быть выражена через силы,
Действие магнитного поля на движущиеся заряженные частицы Действие магнитного поля на движущиеся заряженные частицы.
Силы Ампера и Лоренца 11 класс. Магнитное поле Магнитное поле Магнитное поле – это особая форма материи, которая существует реально, независимо от нас.
Магнитное поле. Магнитная индукция. Сила Ампера. Сила Лоренца. Подготовила учитель физики МОУ СОШ 27 г. Воронежа Морозова Марина Валентиновна.
Движение заряженных частиц в магнитном поле Сила Лоренца Автор работы.
Взаимодействие токов. Действие магнитного поля на движущийся заряд. Сила Лоренца.
Транксрипт:

1 Уроки физики в 11 классе

2

3 Лоренц Хендрик Антон Лоренц ввел в электродинамику представления о дискретности электрических зарядов и записал уравнения для электромагнитного поля, созданного отдельными заряженными частицами (уравнения Максвелла – Лоренца); ввел выражение для силы, действующей на движущийся заряд в электромагнитном поле; создал классическую теорию дисперсии света и объяснил расщепление спектральных линий в магнитном поле (эффект Зеемана). Его работы по электродинамике движущихся сред послужили основой для создания специальной теории относительности. (1853 – 1928 г.г.) великий нидерландский физик – теоретик, создатель классической электронной теории

4 Сила Лоренца - это сила, с которой магнитное поле действует на заряженные частицы Модуль силы Лоренца прямо пропорционален: - индукции магнитного поля В (в Тл); - модулю заряда движущейся частицы |q 0 | (в Кл); - скорости частицы (в м/с) где угол α – это угол между вектором магнитной индукции и направлением вектора скорости частицы

5 Направление силы Лоренца Направление силы Лоренца определяется по правилу левой руки: левую руку надо расположить так, чтобы линии магнитной индукции входили в ладонь, четыре вытянутых пальца были направлены по направлению движения положительно заряженной частицы (или против отрицательной), тогда отогнутый на 90˚ большой палец покажет направление действия силы Лоренца.

6 Пространственные траектории заряженных частиц в магнитном поле Частица влетает в магнитное поле ll линиям магнитной индукции => α = 0˚ => sin α = 0 Если сила, действующая на частицу, = 0, то частица, влетающая в магнитное поле, будет двигаться равномерно и прямолинейно вдоль линий магнитной индукции => Fл = 0

7 Пространственные траектории заряженных частиц в магнитном поле Если вектор В вектору скорости, то α = 90˚ = > sin α = 1 = > В этом случае сила Лоренца максимальна, значит, частица будет двигаться с центростремительным ускорением по окружности

8 Пространственные траектории заряженных частиц в магнитном поле Вектор скорости нужно разложить на две составляющие: и, т.е. представить сложное движение частицы в виде двух простых: равномерного прямолинейного движения вдоль линий индукции и движения по окружности перпендикулярно линиям индукции – частица движется по спирали. 1 R = m | q B

9 Применение силы Лоренца

10

11 1. Определите направление действия силы Лоренца а) 1 б) 2 в) 3 г) 4 д) 5 е) 6 х

12 2. Определите направление действия силы Лоренца х а) 1 б) 2 в) 3 г) 4 д) 5 е) 6

13 3. Определите направление действия силы Лоренца а) 1 б) 2 в) 3 г) 4 д) 5 е) 6 х

14 4. Определите направление действия силы Лоренца а) 1 б) 2 в) 3 г) 4 д) 5 е) 6 х

15 а) по окружности в плоскости чертежа; б) по окружности в плоскости перпендикулярной плоскости чертежа; в) по спирали, плоскость витков которой лежит в плоскости чертежа; г) по спирали, плоскость витков которой перпендикулярна плоскости чертежа; д) по прямой вдоль линий индукции; е) по прямой против линий индукции. 5. По какой траектории будет двигаться данная частица в магнитном поле?

16 а) по окружности в плоскости чертежа; б) по окружности в плоскости перпендикулярной плоскости чертежа; в) по спирали, плоскость витков которой лежит в плоскости чертежа; г) по спирали, плоскость витков которой перпендикулярна плоскости чертежа; д) по прямой вдоль линий индукции; е) по прямой против линий индукции. 6. По какой траектории будет двигаться данная частица в магнитном поле?

17 а) по окружности в плоскости чертежа; б) по окружности в плоскости перпендикулярной плоскости чертежа; в) по спирали, плоскость витков которой лежит в плоскости чертежа; г) по спирали, плоскость витков которой перпендикулярна плоскости чертежа; д) по прямой вдоль линий индукции; е) по прямой против линий индукции. 7. По какой траектории будет двигаться данная частица в магнитном поле?

18 8. В магнитное поле влетают с одинаковыми скоростями два протона так, как показано на рисунке. Чем будут отличаться траектории их движения? а) протон 1 будет двигаться по окружности, протон 2 по прямой; б) они будут вращаться по окружности в противоположных направлениях; в) они будут вращаться по окружности в разных плоскостях; г) траектории будут одинаковые. В

19 9. В магнитное поле влетают две частицы с одинаковыми массами. Заряд второй частицы в 2 раза больше, а скорость первой частицы в 2 раза меньше. Одинаковые ли будут радиусы орбит вращения частиц? а) радиус орбиты второй частицы в 2 раза больше; б) радиус орбиты второй частицы в 4 раза больше; в) радиус орбиты второй частицы в 4 раза меньше; г) радиусы орбит будут одинаковые. В

В магнитное поле влетают две частицы с одинаковыми массами. Заряд и скорость второй частицы в 4 раза меньше. Одинаковые ли будут радиусы орбит вращения частиц? а) радиус орбиты второй частицы в 4 раза больше; б) радиус орбиты второй частицы в 4 раза меньше; в) радиус орбиты второй частицы в 16 раз меньше; г) радиусы орбит будут одинаковые. В

В магнитное поле влетают две частицы с одинаковыми массами. Заряд и скорость второй частицы в 4 раза меньше. Одинаковые ли будут периоды обращения частиц? а) период обращения второй частицы в 4 раза больше; б) период обращения второй частицы в 4 раза меньше; в) период обращения второй частицы в 16 раз меньше; г) периоды обращения будут одинаковые. В

В магнитное поле влетают две частицы. Заряд, масса и скорость второй частицы в 2 раза больше. Одинаковые ли будут периоды обращения частиц? а) период обращения второй частицы в 4 раза больше; б) период обращения второй частицы в 4 раза меньше; в) период обращения второй частицы в 8 раз меньше; г) периоды обращения будут одинаковые. В