Задача 1. М Р К А А 1 А 1 В В 1 В 1 D D1D1 С С 1 С 1 Построение: 1). Соединим т.Р и т.К (т.к. они лежат в одной плоскости А 1 В 1 С 1 D 1 ). Получим РК.

Презентация:



Advertisements
Похожие презентации
Задача 2. А А 1 А 1 В В 1 В 1 D D1D1 С С 1 С 1 Р М К N T Построение: 1). Соединим т.Р и т.М (т.к. они лежат в одной плоскости АА 1 В 1 В). Получим РМ.
Advertisements

Задача 6. А А 1 А 1 В 1 В 1 В С 1 С 1 С D1D1 D Построение: 1). Соединим т.Р и т.О (т.к. они лежат в одной плоскости А 1 В 1 С 1 D 1 ). Получим РО. 2).
Задача 5: А А 1 А 1 В 1 В 1 В С 1 С 1 С D1D1 D Построение: 1). Соединим т.А 1 и т.М (т.к. они лежат в одной плоскости А 1 В 1 С 1 D 1 ). Получим А 1 М.
Задача 3. A A1A1 B B1B1 C C1C1 D D1D1 M F E Дано: точки А 1 - вершина, М – на ребре В 1 С 1, N – на ребре DD 1. Построение: 1). Соединим т.А 1 и т.N (т.к.
Задача 4: А А 1 А 1 В 1 В 1 В С 1 С 1 С D1D1 D Построение: 1). Соединим т.В 1 и т. М (т.к. они лежат в одной плоскости А 1 В 1 С 1 D 1 ). Получим В 1 М.
Построения сечений при наличии трёх данных точек. Виды сечений. Выполнила Цывунина Лариса, Ученица 10 «Г» класса Преподаватель Соловьева А.Х.
Дан куб АВСDA 1 B 1 C 1 D 1 с ребром 2. Найдите расстояние от середины ребра В 1 С 1 до прямой МТ, где точки М и Т – середины ребер AD и А 1 В 1 соответственно.
Расположение точек на рёбрах куба (простейшие случаи) На рёбрах, выходящих из одной вершины На параллельных ребрах На скрещивающихся рёбрах М Т К М К Т.
С 2 С 2. Дан куб АВСDА 1 В 1 С 1 D 1. Найдите угол между плоскостями АВ 1 D 1 и ACD 1. D А В С А 1 А 1 D1D1 С 1 С 1 В 1 В А D1D1 С К.
Р О М А В С S F R Построить: сечение тетраэдра плоскостью (MОР)
Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D АВ С А 1 А 1 D1D1 С 1 С 1 В 1 В 1 Если в кубе не дано.
Построение сечений.. Куб. Уровень А. Куб. Уровень В. Куб. Уровень С. Параллелепипед. Уровень А. Параллелепипед. Уровень В. Параллелепипед. Уровень С.
ДОМАШНЯЯ РАБОТА 10 Э. В единичном кубе АВСДА 1 В 1 С 1 Д 1 найдите расстояние от точки А до прямой ВД 1. D D1D1 А А 1 А 1 В В 1 В 1 С С 1 С
A A1A1 B B1B1 C C1C1 D D1D1 F F1F1 N P M U1U1 U V V1V1 K Q Построение сечения методом внутреннего проектирования Дано: призма ABCDFA 1 B 1 C 1 D 1 F 1,
Задачи на построение сечений Семенова М.С., МОУ СОШ 31 г.Якутска.
A a II расстоянием между скрещивающимися прямыми. Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно.
Анализ тренировочной работы по 2 11 класс
Взаимное расположение прямой и плоскости. Признак параллельности прямой и плоскости. Математика, 10 класс.
Решение задач по теме «Параллельность прямой и плоскости» а α.
Уроки геометрии в 11 классе Призма. Содержание Определение призмы Элементы призмы Построение сечений призмы.
Транксрипт:

Задача 1. М Р К А А1А1 В В1В1 D D1D1 С С1С1 Построение: 1). Соединим т.Р и т.К (т.к. они лежат в одной плоскости А 1 В 1 С 1 D 1 ). Получим РК. 2). Соединим т.М и т.К ( т.к. они лежат в одной плоскости АА 1 D 1 D). Получим МК. 3). Соединим т.Р и т.М. Треугольник МРК – искомое сечение данного куба. Дано: точки P – на ребре А 1 В 1, К – на ребре А 1 D 1, М – на ребре АА 1.