«Теорема Пифагора» Выполнила ученица 8 класса филиала МОУ «Ерышовская СОШ» с.Малиновка Россива Алена Руководитель: учитель математики и информатики Федорова Е.Ю. Какое чудо – этот переход от слепоты к прозрению, к пониманию сути дела! М. Вертгеймер М. Вертгеймер
Ее знали в Китае, Вавилонии, Египте. ( за 1200 лет) до Пифагора
Названия теоремы Во Франции и некоторых областях Германии в средневековье - «мостом ослов». У математиков арабского Востока У математиков арабского Востока «теорема невесты» «теорема невесты» за сходство чертежа с пчелкой, бабочкой, что по-гречески называлось нимфой. за сходство чертежа с пчелкой, бабочкой, что по-гречески называлось нимфой. При переводе с греческого арабский переводчик, не обратив внимания на чертеж, перевел слово «нимфа» как «невеста», а не бабочка. При переводе с греческого арабский переводчик, не обратив внимания на чертеж, перевел слово «нимфа» как «невеста», а не бабочка.
(ок. 580 – ок. 500 г. до н.э.) Пифагор Самосский
О жизни Пифагора известно немного. Он родился в 580 г. до н.э. в Древней Греции на острове Самос, который находится в Эгейском море у берегов Малой Азии, поэтому его называют Пифагором Самосским. О жизни Пифагора известно немного. Он родился в 580 г. до н.э. в Древней Греции на острове Самос, который находится в Эгейском море у берегов Малой Азии, поэтому его называют Пифагором Самосским. Родился Пифагор в семье резчика по камню, который сыскал скорее славу, чем богатство. Ещё в детстве он проявлял незаурядные способности, и когда подрос, неугомонному воображению юноши стало тесно на маленьком острове. Родился Пифагор в семье резчика по камню, который сыскал скорее славу, чем богатство. Ещё в детстве он проявлял незаурядные способности, и когда подрос, неугомонному воображению юноши стало тесно на маленьком острове. Пифагор перебрался в город Милеет и стал учеником Фалеса, которому в то время шёл восьмой десяток. Мудрый учёный посоветовал юноше отправиться в Египет. Когда Пифагор постиг науку египетских жрецов, то засобирался домой, чтобы там создать свою школу. Пифагор перебрался в город Милеет и стал учеником Фалеса, которому в то время шёл восьмой десяток. Мудрый учёный посоветовал юноше отправиться в Египет. Когда Пифагор постиг науку египетских жрецов, то засобирался домой, чтобы там создать свою школу. Он поселился в одной из греческих колоний Южной Италии в городе Кротоне. Там Пифагор организовал тайный союз молодёжи из представителей аристократии. Каждый вступающий отрекался от своего имущества и давал клятву хранить в тайне учения основателя. Пифагорейцы, как их позднее стали называть, занимались математикой, философией, естественными науками. В школе существовал декрет, по которому авторство всех математических работ приписывалось учителю. Он поселился в одной из греческих колоний Южной Италии в городе Кротоне. Там Пифагор организовал тайный союз молодёжи из представителей аристократии. Каждый вступающий отрекался от своего имущества и давал клятву хранить в тайне учения основателя. Пифагорейцы, как их позднее стали называть, занимались математикой, философией, естественными науками. В школе существовал декрет, по которому авторство всех математических работ приписывалось учителю. ПИФАГОР САМОССКИЙ (ок. 580 – ок. 500 г. до н.э.)
c2 = a2 + b2 В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.
a b a a a b b b В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Обозначим площадь квадрата S. Достроим прямоугольный треугольник до квадрата. с M N P K Квадрат состоит из четырехугольника MNPK и четырех равных треугольников. Треугольники равны по двум катетам. А так как (сумма острых углов прямоугольного треугольника), то MNPK – квадрат. Гипотенузы треугольников равны, поэтому MNPK – ромб. Тогда его площадь равна с 2. Площадь каждого треугольника равна. Поэтому Или Откуда
Формулировка Другими словами, площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. = +
Формулировка обратной теоремы Теорема, обратная к теореме Пифагора, также справедлива. Она позволяет проверить, является ли тот или иной треугольник прямоугольным. Этим пользовались землемеры и строители Древнего Египта: они размечали прямые углы с помощью веревки, разделенной узлами на 12 равных кусков. Теорема, обратная к теореме Пифагора, также справедлива. Она позволяет проверить, является ли тот или иной треугольник прямоугольным. Этим пользовались землемеры и строители Древнего Египта: они размечали прямые углы с помощью веревки, разделенной узлами на 12 равных кусков. Прямоугольный треугольник со сторонами 3, 4, 5 называется «египетским», а тройки (a, b, c) натуральных чисел, удовлетворяющие уравнению c 2 = a 2 + b 2, т. е. служащие длинами сторон прямоугольных треугольников, Пифагоровыми. Прямоугольный треугольник со сторонами 3, 4, 5 называется «египетским», а тройки (a, b, c) натуральных чисел, удовлетворяющие уравнению c 2 = a 2 + b 2, т. е. служащие длинами сторон прямоугольных треугольников, Пифагоровыми.
Доказательства На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии. Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).
Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы (для треугольника АВС квадрат, построенный на гипотенузе АС содержит 4 исходных треугольника, а квадраты, построенные на катетах – по 2 треугольника) Теорема доказана.
Из подобия треугольников ACD и CAB следует: Из подобия треугольников ABC и DCB следует: Сложив почленное равенства, получим: Доказательство, основанное на теории подобия
Доказательство Анариция, основанное на том, что равносоставленные фигуры равновелики Чертеж к доказательству Анариция Если на гипотенузе и катетах прямоугольного треугольника построить соответствующие квадраты, то квадрат, построенный на гипотенузе, равновелик сумме квадратов, построенных на катетах. Доказательство основывается на том, что равносоставленные фигуры равновелики: квадраты, построенные на катетах и гипотенузе, разбиваются на многоугольники так, что каждому многоугольнику из состава квадрата на гипотенузе соответствует равный многоугольник одного из квадратов на катетах. Достаточно посмотреть на чертеж, чтобы понять все доказательство (см. рис.). Это доказательство дал багдадский математик и астроном X в. ан-Найризий (латинизированное имя – Анариций).
Оригинальн ое доказательство
Доказательств о Темпельгофа
Доказательство Хоукинсa
Доказательство индийского математика Бхаскари
Доказательс тво Евклида
Если на гипотенузе и катетах прямоугольного треугольника построить соответствующие квадраты, то квадрат, построенный на гипотенузе, равновелик сумме квадратов, построенных на катетах. Геометрическое доказательство Евклида
Историческая справка Пожалуй, это самая популярная теорема геометрии, сделавшая Пифагора наиболее знаменитым математиком. Однако, само утверждение было открыто задолго до него, но в современной истории науки считается, что Пифагор дал ему первое логически стройное доказательство. Пожалуй, это самая популярная теорема геометрии, сделавшая Пифагора наиболее знаменитым математиком. Однако, само утверждение было открыто задолго до него, но в современной истории науки считается, что Пифагор дал ему первое логически стройное доказательство. Теорема Пифагора заслужила место в «Книге рекордов Гиннесса» как получившая наибольшее число доказательств. Американский автор Э. Лумис в книге «Пифагорово предложение», вышедшей в 1940 г., собрал 370 разных доказательств! Однако принципиально различных идей в этих доказательствах используется не так уж много. Теорема Пифагора заслужила место в «Книге рекордов Гиннесса» как получившая наибольшее число доказательств. Американский автор Э. Лумис в книге «Пифагорово предложение», вышедшей в 1940 г., собрал 370 разных доказательств! Однако принципиально различных идей в этих доказательствах используется не так уж много.
Пифагорова головоломка Из семи частей квадрата составить снова квадрат, прямоугольник, равнобедренный треугольник, трапецию. Квадрат разрезается так: E, F, K, L – середины сторон квадрата, О – центр квадрата, ОМ EF, NF EF.
Итак, Итак, Если дан нам треугольник Если дан нам треугольник И притом с прямым углом, И притом с прямым углом, То квадрат гипотенузы То квадрат гипотенузы Мы всегда легко найдём: Мы всегда легко найдём: Катеты в квадрат возводим, Катеты в квадрат возводим, Сумму степеней находим – Сумму степеней находим – И таким простым путём И таким простым путём К результату мы придём. К результату мы придём. Ч.т.д. Ч.т.д.
На марке надпись: «Теорема Пифагора. Эллас. 350 драхм». Эта красивая марка – почти единственная среди многих тысяч существующих, на которой изображен математический факт. Теоремой Пифагора и пифагорейской школой восхищается человечество на протяжении всей истории, им посвящаются стихи, песни, рисунки, картины. В Греции была выпущена почтовая марка по случаю переименования острова Самос в остров Пифагорейон.
Самое ценное в математике - это возможность быстрого приложения теории к практике На глубине 12 футов растет лотос с 13-футовым стеблем. Определите, на какое расстояние цветок может отклониться от вертикали, проходящей через точку крепления стебля ко дну. Случися некоему человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обрете лестницу долготою 125 стоп. И ведати хощет, колико стоп сея лествицы нижний конец от стены отстояти имать
На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С теченьем реки его ствол составлял. Запомни теперь, что в том месте река В четыре лишь фута была широка. Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?