Голодникова Алевтина Александровна – преподаватель математики ГБ ПОУ «Экономический колледж» г.Санкт-Петербурга.

Презентация:



Advertisements
Похожие презентации
Комбинаторика - раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
Advertisements

Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
БОУ СПО «Чебоксарский медицинский колледж» Минздравсоцразвития Чувашии Комбинаторика. Правило произведения. Объяснения новой темы Алгебра. 11 класс. Базовый.
Тема: элементы комбинаторики Разработала: Касьянова Л. В. Преподаватель математики ГУ НПО Технологический профессиональный лицей. г. Великий Новгород.
Сочетания и их свойства. А-11. Определение: Сочетаниями из m элементов по n элементов в каждом (nm) называются соединения, каждое из которых содержит.
Элементы комбинаторики. Комбинаторика – это область математики, в которой изучаются вопросы о том, сколько разных комбинаций, подчиненных тем или иным.
Правила комбинаторики Основные понятия. КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных.
LOGO Элементы комбинаторики..
Комбинаторика без формул? Лапшева Е.Е., факультет КНиИТ СГУ.
УРОК 4. Элементы комбинаторики.. Задачи на непосредственный подсчет вероятностей Комбинаторика изучает количество комбинаций (подчиненное определенным.
КОМБИНАТОРИКА Выполнила: ученица 11 класса МОШ I-III ступеней 2 Посадская Татьяна Учитель: Богомолова И.В.
КОМБИНАТОРИКА. Комбинаторика (лат. «combina») соединять, сочетать это раздел математики, который изучает, сколько различных комбинаций можно составить.
Определение Область математики, в которой изучают комбинаторные задачи, называется комбинаторикой.
Размещения. А Размещения В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что каждое место занято.
Правила комбинаторики Основные понятия алгебра 9 класс Выполнила Гуляева Е.В. учитель математики МОУ ПСШ.
Средняя школа 46 ШЕСТЬ УРОКОВ ПО КОМБИНАТОРИКЕ В 7-м КЛАССЕ Белгород 2005 Тарасова А.М.
Задача 1: Сколько различных трёхзначных чисел можно записать с помощью цифр 0,6,9? Цифры могут повторяться. Решение: Подсчёт вариантов выполним с помощью.
Комбинаторика и теория вероятностей. Комбинаторика Задачи, в которых необходимо составлять определенным образом комбинации из нескольких предметов и находить.
РАЗДЕЛ 8 Элементы теории вероятностей и математической статистики.
- самостоятельный раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
Транксрипт:

Голодникова Алевтина Александровна – преподаватель математики ГБ ПОУ «Экономический колледж» г.Санкт-Петербурга

Содержание: 1. Правило произведения Правило произведения Правило произведения 2. Перестановки Перестановки 3. Размещения Размещения 4. Об авторе Об авторе Об авторе 5. Электронные ресурсы Электронные ресурсы Электронные ресурсы

Правило произведения Комбинаторика – это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Если существует m вариантов выбора первого элемента и для каждого из них имеется n вариантов выбора второго элемента, то всего существует m n различных пар с выбранными таким образом первым и вторым элементами.

Задача 1 Сколько различных двузначных чисел можно записать с помощью цифр 0, 1, 2, 3? Решение: m = 3, n = 4; m n = 12 Ответ: 12 Задача 2 Сколько различных трехзначных чисел можно записать с помощью цифр 0, 1, 2, 3? Решение: m=3, n=4, k=4; mnk=3 4 4 =48 Ответ: 48 Задача 3Сколько различных пятибуквенных слов можно записать с помощью букв «и» и «л»? Решение: a = 2, b = 2, c = 2, d = 2, f=2; Ответ: 32 = =abcdf =

1 Сколько различных двузначных чисел с разными цифрами можно записать, используя цифры: 1 вариант: 1) 1, 2 и 3; 3) 5, 6, 7 и 8; 5) 0, 2, 4 и 6; 2 вариант: 2) 4, 5, и 6; 4) 6, 7, 8 и 9; 6) 0, 3, 5 и 7? Ответ: 1), 2) 6; 3), 4) 12; 5), 6) 9. 2 Сколько различных трехзначных чисел можно записать с помощью цифр: 1 вариант: 1) 2 и 3; 3) 0 и 2; 2 вариант: 2) 8 и 9; 4) 0 и 5? Ответ: 1), 2) 8; 3),4) 4.

3 Сколько различных трехзначных чисел, не имеющих одинаковых цифр, можно записать с помощью цифр: 1 вариант: 1) 3, 4 и 5; 3) 5, 6, 7 и 8; 2 вариант: 2) 7, 8, и 9; 4) 1, 2, 3 и 4? Ответ: 1),2) 6; 3),4) Сколько различных четырехбуквенных «слов» можно записать с помощью букв: 1 вариант: 1) «м» и «а»; 3) «к», «а» и «о»; 2 вариант: 2) «п» и «а»; 4) «ш», «а» и «л». Ответ: 1), 2) 16; 3), 4) 81. С.Р.

5 Путешественник может попасть из пункта А в пункт С, проехав через пункт В. Между пунктами А и В имеются три различные дороги, а между пунктами В и С - четыре различные дороги. Сколько существует различных маршрутов между пунктами А и С? Решение: m = 3, n = 4; mn = 34 = 12 Ответ: 12 АВС

6 Чтобы попасть из города М в город К, нужно проехать через город N. Между городами М и N имеются четыре автодороги, а из города N в город К можно попасть либо поездом, либо самолетом. Сколько существует различных способов добраться из города М в город К? Ответ: 8 С.Р. Д/З: § 60, 1051, Дополнительно

) 992 2) ) 720 2) 120 Сколькими способами могут распределиться золотая и серебряная медали на чемпионате по футболу, если в нем принимают участие: 1) 32 команды; 2) 16 команд? Сколькими способами можно составить расписание 5 уроков на один день из 5 различных предметов? Сколькими способами могут занять очередь в школьный буфет: 1) 6 учащихся; 2) 5 учащихся? Дополнительно

В классе 18 учащихся. Из их числа нужно выбрать физорга, культорга и казначея. Сколькими способами это можно сделать, если один ученик может занимать не более одной должности? В классе 20 учащихся. Необходимо назначить по одному дежурному в столовую, вестибюль и спортивный зал. Сколькими способами это можно сделать? Сколько существует пятизначных чисел, в которых все цифры, стоящие на нечетных местах, различны?

Решение упражнения 1: ), 2) 3), 4) 5), 6) Х Х Х = = =

Задача 3 Сколько различных пятибуквенных слов можно записать с помощью букв «и» и «л»? Решение: a = 2, b = 2, c = 2, d = 2, f=2; Ответ: 32 = = abcdf =

Перестановками из n элементов называются соединения (комбинации), которые состоят из одних и тех же n элементов и отличаются одно от другого только порядком их расположения. Задача 1: Сколькими способами можно поставить рядом на полке 4 различные книги? Решение: 4321=24 Ответ: 24 ХХХ

Число перестановок: (1) Произведение первых n натуральных чисел обозначают n! (читается «эн факториал») n! = (n –2)(n–1)n P n = n(n –1)(n – 2) (2)(2) P n = n! (3)(3)

1059 Найти значение: 1) P 5 = 5! = = 120 ; 2) P 7 ; 3) P 9 ; 4) P Сколькими способами можно рассадить четверых детей на четырех стульях в столовой? 1063 Сколько различных чисел, не содержащих одинаковых цифр, можно записать с помощью цифр 1,2,3,4,5 так, чтобы: 1) последней была цифра 3; 3) первой была цифра 5, а второй – цифра 1; 5) первыми были цифры 3 и 4, расположенные в любом порядке? Решение: 1) =

Решение: 3) = ) = Д/З: § 61, 1063 (четные) Упражнения:Упражнения:

Сколько различных двузначных чисел можно записать с помощью цифр 1, 2, 3, 4 при условии, что в каждой записи нет одинаковых цифр? 12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43. Из задачи видно, что любые два соединения отличаются либо составом элементов (12 и 24), либо порядком их расположения (12 и 21). Такие соединения называют размещениями.

Размещениями из m элементов по n элементов (n m) называются такие соединения, каждое из которых содержит n элементов, взятых из данных m разных элементов, и которые отличаются одно от другого либо самими элементами, либо порядком их расположения. Обозначение: читают «А из эм по эн»: = 12.

= m(m – 1)(m – 2) … (m – (n – 1)) = 4 3 = 12; = = 24; = = 60 = Сколькими способами можно обозначить данный вектор, используя буквы A, B, C, D, E, F? = 6 5 = 30 (1) (2)

= 56 Решение: n 2 и n N. По формуле (1) n = – 7 – посторонний корень n = 8 = n(n – 1) = – n, т. е.– n = 56, – n – 56 = 0, + = 1 = – 56 т. е. = – 7 = 8

Вычислить: Ответ: 225 Д/З: § 62, 1072, – 1075