Уравнения, сводящиеся к алгебраическим Методическая разработка учителя Поляковой Е. А.

Презентация:



Advertisements
Похожие презентации
Уравнения высших степеней. Возвратные уравнения. Методическая разработка учителя Поляковой Е. А.
Advertisements

Возвратные уравнения. Алгебраические уравнения вида: Возвратные уравнения это уравнения, у которых коэффициенты, одинаково удалённые от начала и от конца,
Системы нелинейных уравнений с двумя неизвестными Методическая разработка учителя Поляковой Е. А.
Решение алгебраических уравнений Методическая разработка учителя Поляковой Е. А.
Решение алгебраических уравнений Методическая разработка учителя Поляковой Е. А.
Различные способы решения систем уравнений Методическая разработка учителя Поляковой Е. А.
Лекция Различные способы решения уравнений. Цели занятия: 1) рассмотреть с учащимися различные способы решения уравнений; 2) выработать навык решения различных.
Сатиев Ахмед Ученик 8 « г » класса Школы 36. Квадратным уравнением называется уравнение вида ах 2 + bx + c = 0, где а, b, с – числа, а 0, х – неизвестное.
Распадающиеся уравнения. Определение Уравнение вида А(х) В(х) = 0, где А(х) и В(х) - многочлены относительно х, называют распадающимися уравнениями. Множество.
Корнем уравнения называется то значение неизвестного, при котором это уравнение превращается в верное равенство. Решить уравнение – значит найти все его.
Рациональные уравнения Целые Способ подстановки возвратные распадающиеся биквадратные (x + a) 4 + (x + b) 4 = c (x + a) 4 + (x + b) 4 = c симметричные.
Уравнения высших степеней.. Методы решения уравнений: Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) Замена уравнения h(f(x)) = h(g(x)) уравнением.
Содержание Определение квадратного уравнения; Решение неполных квадратных уравнений; Решение уравнений, сводящихся к неполным квадратным уравнениям; Тест.
Алгебраические выражения. Алгебраическое выражение -
Квадратные уравнения. Квадратное уравнение Квадратным уравнением называется уравнение вида ах 2 + bx + c = 0, где а, b, с – числа, а 0, х – неизвестное.
Не изменены знаки при переносе Ошибка в счете Ошибка при нахождении х: Потерян минус; Разделили k на b 36х-4(6х-2)+38=х+3(4-2х) 36х-4(6х-2)+38=х+3(4-2х)
GE131_350A
Итоговое тестирование по алгебре 8 класс Выполнила учитель математики МОШ 32 Золотарёва Марина Фёдоровна.
«Распадающиеся уравнения.» Л Е К Ц И Я Литература : С.М. Никольский и др. «Алгебра : Учебник для 8 класса общеобразовательных учреждений» серии «МГУ –
Решение дробных рациональных уравнений Алгебра 8 класс.
Транксрипт:

Уравнения, сводящиеся к алгебраическим Методическая разработка учителя Поляковой Е. А.

Рассмотрим примеры уравнений, которые можно свести к алгебраическим уравнениям. 18 (1). Найти действительные корни уравнения: Решение. Выполнив преобразования, уравнение можно свести к алгебраическому уравнению: Делители 6: ±1; ± 2; ± 3; ± 6. Проверка показывает, что только Р( 3) = 0, значит,

х³ + х² 4 х + 6 х + 3 х²х³ + 3 х² 2 х² 4 х 2 х 2 х² 6 х 2 х х + 6 Другие корни: х² 2 х + 2 = 0, D 1 = 1 2 = 1; других корней нет. Ответ: 3. 3 целый корень уравнения, тогда

Возвратные уравнения

Алгебраические уравнения вида: Возвратные уравнения это уравнения, у которых коэффициенты, одинаково удалённые от начала и от конца, равны между собой. и т. д. называются возвратными уравнениями. Их решают с помощью замены:

Заметим, из того, что 1 !!!

19 (1). Решить возвратное уравнение: Решение. х = 0 не является корнем уравнения, поэтому уравнение можно разделить на х², получив Сделаем замену тогда 6 (t² 2) 35 t + 62 = 0 или

6 t² 35 t + 50 = 0, D = = 25; D =25 16 = 9, тогда D =25 9 = 16, тогда Ответ: ½; ; 2; 3.

21*(2). Решить уравнение: Решение. х = 0 не является корнем уравнения, поэтому уравнение можно разделить на х², получив Пустьтогда 2 (t² + 2) 15 t + 14 = 0 или

2 t² 15 t + 18 = 0, D = = 81; D = = 25, тогда D = = 10, тогда Ответ: ½; 2;

показать Самостоятельно решить уравнение: t² 7t + 12 = 0, 6 t² + 5 t 50 = 0,

показать

Ответ: Ответ: 3; ; ½; 2.

Решение рациональных уравнений

Уравнение это пример целого уравнения. Уравнение это пример рационального уравнения, так как его членами являются рациональные алгебраические дроби, у которых числителями и знаменателями являются многочлены.

Схема решения рационального уравнения Умножить уравнение на общий знаменатель дробей, входящих в это уравнение, считая, что он не равен нулю. Свести полученное уравнение к алгебраическому и решить его. Проверить, при каких найденных значениях неизвестного общий знаменатель не равен нулю.

20 (1). Решить рациональное уравнение: Решение. Перепишем уравнение в виде: Умножая это уравнение на общий знаменатель (х + 1)(2 х) 0, получаем х²(2 х) + 5(х + 1) = 11;2 х² х³ + 5 х = 0; х³ 2 х² 5 х + 6 = 0.

Решаем это уравнение, находя его целые корни: х 1 = 1; х 2 = 2; х 3 = 3. Проверка:при х = 1 (х + 1)(2 х) 0, при х = 2 (х + 1)(2 х) 0, при х = 3 (х + 1)(2 х) 0. Ответ: 1; 2; 3.

22 (1). Найти действительные корни уравнения: Решение. х² 3 х + 2 =(х 1)(х 2), тогда Умножая это уравнение на общий знаменатель (х 1)(х 2) 0, получаем (х ³ 9 х²)(х 2) + (х 1) + 27(х 1)(х 2) = 2 х 3;

Решаем это уравнение, находя его корни: х 1 = 2; х 2 = 4. Проверка:при х = 2 (х 1)(х 2) = 0, значит, 2 посторонний корень; при х = 4 (х 1)(х 2) 0. Ответ: 4.

Решение уравнений, сводящихся к алгебраическим, взятых из сборника заданий для подготовки к итоговой аттестации в 9 классе (авт. Л. В. Кузнецова и др.).

2.24 (4 балла) Решите уравнение: 1) ( х² + 4 х )( х ² + 4 х 17)= 60 Решение. Сделаем замену:х² + 4 х = у, получим уравнение( у 17 ) = 60 или у² 17 у + 60 = 0, корни которого у = 5; у = 12. Вернёмся к замене, получим уравнения: а) х² + 4 х = 5 или х² + 4 х 5 = 0, где х 1 = 5, х 2 = 1; б) х² + 4 х = 12 или х² + 4 х 12 = 0, где х 3 = 6, х 4 = 2. Ответ: 5; 1; 6; 2.

2.25 (4 балла) Решите уравнение: Решение. Сделаем замену: получим уравнение(у + 3)( у 4 ) + 10 = 0 или у² у 2 = 0, корни которого у = 1; у = 2. Вернёмся к замене, получим уравнения: или х² 3 х + 2 = 0, где х 1 = 1, х 2 = 2; или х² 3 х 4 = 0, где х 3 = 1, х 4 = 4. Ответ: 1; 2; 1; 4.

2.54 (6 баллов) Решите уравнение: 1) ( 2 х² х + 1)² + 6 х = х² Решение. Перепишем уравнение в виде ( 2 х² х + 1)² ( 9 х² 6 х + 1) = 0 или ( 2 х² х + 1)² ( 3 х 1)² = 0; используем формулу разности квадратов, получаем: (2 х² х х + 1)(2 х² х х 1) = 0, (2 х² 4 х + 2)(2 х² + 2 х) = 0,х(х² 2 х + 1)(х + 1) = 0, х(х 1)²(х + 1) = 0. Произведение множителей равно нулю, если хотя бы один из них равен нулю (другие при этом существуют). Поэтому получаем корни уравнения: х 1 = 0, х 2 = 1, х 3 = 1. Ответ: 0; 1; 1.

2.56 (6 баллов) Решите уравнение: Решение. Перепишем уравнение в виде 1) ( х² 7 х + 13 )² (х 3)(х 4)= 1 ( х² 7 х + 13 )² (х² 7 х ) 1 = 0 Сделаем замену:х² 7 х +13 = у,получим уравнение у² ( у 1) 1 = 0; у² у = 0 или у(у 1) = 0, корни которого у = 0; у = 1. Вернёмся к замене, получим уравнения: а) х² 7 х + 13 = 0 где нет корней, так как D < 0; б) х² 7 х + 13 = 1 или х² 7 х + 12 = 0, где х 1 = 3, х 2 = 4. Ответ: 3; 4.

2.57 (6 баллов) Решите уравнение: 1) ( х 2 )( х 1 )( х + 2 )( х + 3 )= 60 Решение. Перепишем уравнение в виде ( ( х 2 )( х + 3 ) )( ( х 1 )( х + 2 ) ) = 60; ( х² + х 6 ) ( х² + х 2 ) = 60 или Сделаем замену: ( х² + х 4 2 ) ( х² + х ) = 60. х² + х 4 = у,получим уравнение (у 2)(у + 2) = 60; у² 4 = 60 или у² = 64, где у = ± 8. Вернёмся к замене, получим уравнения: а) х² + х + 4 = 0, где нет корней, так как D < 0; б) х² + х 12 = 0, где х 1 = 4, х 2 = 3. Ответ: 4; 3.

2.64 (6 баллов) Решите уравнение: Решение. Учтём, что х 0 и х² + х 5 0. (*) получим уравнение у² + 4 у + 3 = 0,корни которого у = 3; у = 1. Сделаем замену: Вернёмся к замене, получим уравнения: или х² + 4 х 5 = 0, где х 1 = 5, х 2 = 1; или х² + 2 х 5 = 0, где Ответ: 5; 1;х 1 ; х 2 ; х 3 ; х 4 удовлетв. узлов. (*)

2.67 (6 баллов) Решите уравнение: Решение. Учтём, что х (*) Приведём уравнение к виду Сделаем замену: И продолжим решение аналогично предыдущим задачам Ответ: 1; 2.

2.68 (6 баллов) Решите уравнение: Решение. Это возвратное уравнение; заменой приведём его к у уравнению: 2(t² + 2) 11t + 8 = 0 или 2t² 11t + 12 = 0. Дальнейшее решение аналогично рассмотренным ранее возвратным уравнениям. Ответ: 0,5; 2;

2.69 (6 баллов) Решите уравнение: Решение. Перепишем уравнение в виде или Сделаем замену:х² + 4 х 5 = у,получим уравнение

у² +18 у + 72 = 0, корни которого у = 12; у = 6. Вернёмся к замене, получим уравнения: а) х² + 4 х + 7 = 0, где нет корней, так как D 1 < 0; б) х² + 4 х + 1 = 0, где Ответ: Учтём, что у 0 и у (*) Условие, что у 0 и у выполняется.