Прямоугольный треугольник КЛАСС. С о д е р ж а н и е Из истории математики Определения Некоторые свойства прямоугольных треугольников Признаки равенства.

Презентация:



Advertisements
Похожие презентации
Прямоугольный треугольник Учитель: Саншокова С. С.
Advertisements

Прямоугольный треугольник КЛАСС. С о д е р ж а н и е Из истории математики Определения Некоторые свойства прямоугольных треугольников Признаки равенства.
Урок обобщения и систематизации знаний по теме «Прямоугольный треугольник» Выполнила Корчмар Ольга Григорьевна учитель математики ОШ І-ІІ ст. 4.
КЛАСС Прямоугольный треугольник. Содержание Из истории математики Из истории математики Из истории математики Из истории математики Определение Определение.
Прямоугольный треугольник КЛАСС. С о д е р ж а н и е Из истории математики Определения Некоторые свойства прямоугольных треугольников Признаки равенства.
Прямоугольный треугольник. Решение задач. КЛАСС. Цель урока: -привести в систему знания по теме «Прямоугольный треугольник»; -совершенствовать навыки.
МОУ-ОСОШ 1 г. Искитима Треугольники Геометрия 7-9 класс Составила : Козлова Татьяна Ученица 10 г класса Учитель : Фельзинг Ольга Ивановна.
Презентация разработана учителем математики МОУ СОШ 1 г. Называевска Роскошной А.В. Прямоугольный треугольник.
Тема: Прямоугольные треугольники. Из истории математики. Из истории математики. Прямоугольный треугольник занимает почётное место в вавилонской геометрии,
Учебно-исследовательская деятельность школьников как технология развивающего образования Учитель информатики МБОУ СОШ 25 Горбунова Татьяна Степановна.
Треугольники Москва, 2013 Проверим ваши знания: 1)Определение треугольника. 2)Виды треугольников. 3) Свойства прямоугольного треугольника. 4) Свойства.
Прямоугольные треугольники Учитель математики МКОУ « Москаленский лицей» Бадюк Ольга Ярославна.
Евклид ( иначе Эвклид ) – древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения об.
Признаки равенства прямоугольных треугольников. Вопрос 1 Какой треугольник называется прямоугольным? Ответ: Если один из углов треугольника прямой, то.
Презентация по теме: «Треугольники» Подготовили Ученицы 9 класса Б Камаретдинова Карина Семёнова Алина.
Шуть И.Е. 1. Фронтальный опрос: а)Определение треугольника. б)Виды треугольников в)Признаки равенства треугольников. г)Свойства равнобедренного треугольника.
ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК Презентация разработана учителем математики МОУ «Корниловская средняя школа» Купцовой Е.В.
Евклид и его «Начала»
Все о треугольниках ГЕОМЕТРИЯ 7 КЛАСС Составила: учитель математики ОГКУЗ «Детский санаторий г. Грайворон» г. Грайворон, Белгородская область.
Тема: «Первый признак равенства треугольника»7 класс Туленкова Н.В. МОУ «Просторская средняя общеобразовательная школа» Кваркенского района Оренбургской.
Транксрипт:

Прямоугольный треугольник КЛАСС

С о д е р ж а н и е Из истории математики Определения Некоторые свойства прямоугольных треугольников Признаки равенства прямоугольных треугольников Задачи по готовым чертежам Об авторе Контрольный тест Это интересно

Из истории математики Прямоугольный треугольник занимает почётное место в вавилонской геометрии, упоминание о нём часто встречается в папирусе Ахмеса.папирусе Ахмеса Термин гипотенуза происходит от греческого hypoteinsa, означающего тянущаяся под чем либо, стягивающая. Слово берёт начало от образа древнеегипетских арф, на которых струны натягивались на концы двух взаимно перпендикулярных подставок. Термин катет происходит от греческого слова «катетом », которое означало отвес, перпендикуляр. В средние века словом катет означали высоту прямоугольного треугольника, в то время, как другие его стороны называли гипотенузой, соответственно основанием. В XVII веке слово катет начинает применяться в современном смысле и широко распространяется, начиная с XVIII века. Евклид Евклид употребляет выражения: «стороны, заключающие прямой угол», - для катетов; «сторона, стягивающая прямой угол», - для гипотенузы.

Определения Если один из углов треугольника прямой, то треугольник называется прямоугольным. А В С Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой, а две другие – катетами. Треугольник – это геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх отрезков, соединяющих эти точки.

Некоторые свойства прямоугольных треугольников 1. Сумма двух острых углов прямоугольного треугольника равна Катет прямоугольного треугольника, лежащий против угла в 30 0, равен половине гипотенузы. 3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30 0.

Признаки равенства прямоугольных треугольников 1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. 4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны. Докажем?

Признаки равенства прямоугольных треугольников 1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. 4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны. Докажем?

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. Дано: Доказать: Доказательство: В А А1А1 С С1С1 В1В1 АВС – прямоугольный, А 1 В 1 С 1 – прямоугольный, ВС = В 1 С 1, АС = А 1 С 1. АВС = А 1 В 1 С 1 следует из первого признака равенства треугольников (по двум сторонам и углу между ними).

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны. В А А1А1 С С1С1 В1В1 Дано: Доказать: Доказательство: следует из второго признака равенства треугольников (по стороне и прилежащим к ней углам) АВС – прямоугольный, А 1 В 1 С 1 – прямоугольный, АС = А 1 С 1, АВС = А 1 В 1 С 1

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. В А А1А1 С С1С1 В1В1 Дано: Доказать: Доказательство: т.к. сумма острых углов прямоугольного треугольника равна 90°, то два других острых угла также равны, АВС = А 1 В 1 С 1 АВС – прямоугольный, А 1 В 1 С 1 – прямоугольный, АВ = А 1 В 1, по второму признаку равенства треугольников (по стороне и прилежащим к ней углам). поэтому треугольники равны

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны. В А А1А1 С С1С1 В1В1 Дано: Доказать: Доказательство: АВС = А 1 В 1 С 1 АВС – прямоугольный, А 1 В 1 С 1 – прямоугольный, АВ = А 1 В 1, АС = А 1 С 1. Наложим А 1 В 1 С 1 на треугольник АВС. Т.к. АС = А 1 С 1 и АВ = А 1 В 1, то они при наложении совпадут. Тогда вершина А 1 совместиться с вершиной А. Но и тогда и вершины В 1 и В также совместятся. Следовательно, треугольники равны.

Задачи по готовым чертежам А СВ D ? В А С 37 0 ? ? А В С 70 0 ? А В С см ? см D С А В ? 4,2 см 8,4 см

Контрольный тест 1. Прямоугольным называется треугольник, у которого а) все углы прямые;все углы прямые б) два угла прямые;два угла прямые в) один прямой угол.один прямой угол

2. В прямоугольном треугольнике всегда а) два угла острых и один прямой;два угла острых и один прямой б) один острый угол, один прямой и один тупой угол;один острый угол, один прямой и один тупой угол в) все углы прямые.все углы прямые Контрольный тест

3. Стороны прямоугольного треугольника, образующие прямой угол, называются а) сторонами треугольника;сторонами треугольника б) катетами треугольника;катетами треугольника в) гипотенузами треугольника.гипотенузами треугольника Контрольный тест

4. Сторона прямоугольного треугольника, противолежащая прямому углу, называется а) стороной треугольника;стороной треугольника б) катетом треугольника;катетом треугольника в) гипотенузой треугольника.гипотенузой треугольника Контрольный тест

5. Сумма острых углов прямоугольного треугольника равна а) 180°;180° б) 100°;100° в) 90°.90°

Об авторе Данная разработка выполнена учителем математики МОУ «Средняя общеобразовательная школа 33» г.Брянска Кулешовой Галиной Николаевной. Все отзывы, предложения и вопросы вы можете направить по адресу: E-maii: Телефон: 8 – 920 – 607 – 20 – 95 Вернуться к содержанию

Папирус Ахмеса Математический папирус Ахмеса древнеегипетское учебное руководство по арифметике и геометрии периода Среднего царства, переписанное около 1650 до н. э. писцом по имени Ахмес на свиток папируса длиной 5,25 м. и шириной 33 см. Папирус Ахмеса был обнаружен в 1858 шотландским египтологом Генри Риндом и часто называется папирусом Райнда по имени его первого владельца. В 1870 папирус был расшифрован, переведён и издан. Ныне большая часть рукописи находится в Британском музеев Лондоне, а вторая часть в Нью - Йорке. Этот документ остается основным источником информации по математике древнего Египта. Он содержит чертежи треугольников с указаниями углов и формулами нахождения площадей. Во вступительной части папируса Райнда объясняется, что он посвящён «совершенному и основательному исследованию всех вещей, пониманию их сущности, познанию их тайн». Все задачи, приведённые в тексте, имеют в той или другой степени практический характер и могли быть применены в строительстве, размежевании земельных наделов и других сферах жизни и производства. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами, пропорциональное деление, нахождение отношений.

Е В К Л И Д Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Сведения об Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н. э. Евклид – первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвел итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить работу «О делении фигур», сохранившуюся в арабском переводе, четыре книги «Конические сечения», материал которых вошел в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. Евклид – автор работ по астрономии, оптике, музыке и др. Дошедшие до нас произведения Евклида собраны в издании «Euclidis opera omnia», ed. J. L. Heibert et Н. Menge, v. 1–9, 1883–1916, дающем их греческие подлинники, латинские переводы и комментарии позднейших авторов.

Это интересно Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины. В любом треугольнике: 1. Против большей стороны лежит больший угол, и наоборот. 2. Против равных сторон лежат равные углы, и наоборот. 3. Сумма углов треугольника равна 180 º 4. Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним. 5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a b – c; b a – c; c a – b ).

Ответ не правильный. Более внимательно изучи данную тему!

Вы верно ответили на все вопросы !