Работу выполнила ученица 7 класса Гущина Алёна Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 г.Суздаля»
Сумма вычитаемого, уменьшаемого и разности равна Чему равно уменьшаемое ? 1 Решение : Пусть х – будет вычитаемое. Тогда y – уменьшаемое, а z – разность. Известно что х + у + z = ) х – у – z = 0 + х + у + z = х = 2012 х = – уменьшаемое. Проверка : 1006 – 1000 = = 2012 Ответ : 1006.
Сколько вершин у этого тела? 2 Ответ : 10 вершин.
На день рождения Пети купили пирожные : эклеры, безе, корзиночки. Каждому гостю досталось по 2 пирожных, причём у всех оказались разные наборы. Могло ли у Маши быть 7 гостей ? 3 Э – эклеры, б – безе, к – корзиночки. Решение : 1 гость - Э, Б. 2 гость - Э, Э. 3 гость - Э, К. 4 гость - Б, К. Ответ : 5 гость - Б, Б. 6 гость - К, К. не могло
Реши ребус : FORTY + TEN TEN SIXTY 4 Решение :
Николай на вопрос, каков его возраст, отвечал, что через 13 лет ему будет в 4 лет раза больше лет, чему 2 года назад. Сколько лет Николаю? 5 Решение : х + 13 = 4 * (х - 2) х + 13 = 4 х - 8 х – 4 х = х = - 21 х = 7 Ответ : Николаю 7 лет.
6 Часы с боем делают 3 удара за 4 секунды. За сколько секунд они сделают 9 ударов? 4 с 2 с 1) = 12(с) – сделают 9 ударов. Ответ : за 12 секунд часы сделают 9 ударов. 4 с
7 Какой из рисунков можно нарисовать одним росчерком, не проводя по одной линии дважды ? Ответ : только первый рисунок
8 Вставь вместо * арифметические знаки, чтобы в результате получилось 1. Ответ : + – + – =
9 Четыре гири весят 40 кг. Определи вес самой тяжёлой, если каждая следующая в три раза тяжелее предыдущей. Пусть х кг – самая лёгкая гиря. Тогда 3 х кг – следующая гиря, 9 х кг – средняя гиря, а тяжёлая – 27 х кг. Известно что все 4 гири весят – 40 кг. 1) х + 3 х + 9 х + 27 х = х = 40 х = 1 1 кг – весит самая лёгкая гиря. 2) 1 * 3 = 3 (кг) – лёгкая гиря. 3) 1 * 9 = 9 (кг) – средняя по весу гиря. 4) 1 * 27 = 27 (кг) – тяжёлая гиря. Ответ : 27 кг. Решение :
10 С какой стороны нужно взглянуть на фигуру 1, чтобы увидеть фигуру 2? Ответ : с задней стороны. 1 2
11 В делении: 3** : *3 = 3* Восстановите делимое. Решение : 390 : 13 = 30
12 6 мальчиков и 4 девочки за перемену могут съесть 36 булочек. Сколько булочек при таком аппетите могут съесть 9 мальчиков и 6 девочек ? Решение : 1) 36 : (6 + 4 ) = 3,6 2) 3,6 * (9 + 6 ) = 54 – булочки. Ответ : 54 булочки.
13 Есть 13 одинаковых квадратов. Как из них составить 2 квадрата? Решение :
14 Сколько треугольников изображено на рисунке? Ответ: 21 треугольник
15 Часы показывают 11 часов. Через сколько минут минутная стрелка догонит часовую? Ответ : Минутная стрелка догонит часовую в 12 часов, а сейчас 11 часов. Значит, произойдёт это через 60 минут.
16 Окрашенный кубик с ребром 10 см распилили на кубики с ребром 1 см. Сколько кубиков имеют две окрашенные грани? Решение : Окрашены те кубики, которые расположены на рёбрах куба(у кубиков, находящихся в вершинах, окрашено по 3 грани, их не считаем). Рёбер у куба 12 => 12 * 8 = 96. Ответ : 96 кубиков.
Из пяти точек никакие три не лежат на одной прямой. Сколько различных треугольников с вершинами в этих точках можно построить? 17 Ответ : 12 треугольников
Как изменится разность, если уменьшаемое уменьшить на 1, а из вычитаемого вычесть 1? 18 Решение : х – у = z х – 1 – (у – 1) = х – 1 – у + 1 = х – у = z Ответ : не изменится.
Сколько всего вершин у четырёх кубиков? 19 Решение: 8 вершин * 4 кубика = 32 вершины Ответ: 32 вершины
20 Из 9 монет 1 фальшивая, она легче настоящих. Настоящие монеты весят поровну. За 2 взвешивания на чашечных весах без гирь определи фальшивую монету. Решение : Разделить монеты на 3 кучки по 3 штуки; взвесить любые 2 кучки. Если они весят одинаково, то фальшивая монета – в третьей кучке. Потом берём 2 любые монеты из «самой лёгкой» кучки. Если они одинаковые по весу, то фальшивая третья монетка, а если нет - то фальшивая та, что легче других.
Какая грань будет находиться сверху, если кубик, сделанный из данной развёртки, поставить на закрашенную грань? 21 Ответ: 4 грань
22 На столе лежат пятиугольники и шестиугольники, вырезанные из бумаги. Всего у них ровно 37 вершин. Сколько пятиугольников на столе ? Ответ : 5 пятиугольников.
23 Вот так выкладывают цифры из палочек: Какое самое большое число удастся выложить из 5 палочек ? Ответ : число 9
24 Сколько отрезков на чертеже ? Ответ : 10 отрезков АВСDЕ
25 В комнате сидят несколько кошек и 6 собак. Кошачьих лап вдвое больше, чем собачьих носов. Сколько кошек в комнате ? Ответ : 3 кошки. Решение: Если собак - 6, то кошачьих лап – 12. Значит, всего кошек – 3.
26 Из 12 спичек составлен квадрат. Убери 2 спички, чтобы осталось 2 квадрата. Ответ :
27 Конкурс «Кенгуру» всегда проходит в третий четверг марта. Какова самая ранняя из возможных дат «Кенгуру» ? Ответ: Если 1.03 – воскресенье, тогда самая ранняя из возможных дат проведения конкурса «Кенгуру» – 12 марта.
28 Сколько из следующих чисел уменьшается, если их прочитать справа налево: 1991, 2323, 2112, 2222, 3131, 2332, 5252 ? Ответ: 3131, всего 2 числа.
29 На велогонках Вася ехал со скоростью 20 км/час, а Коля половину пути со скоростью 24 км/час, а вторую половину – со скоростью 16 км / час. Кто из них приехал раньше ? Решение: Пусть х км – длина дистанции, тогда Вася ехал х/20 часов, а Коля – х/48+х/32=5 х/96 часов. х/20<5 х/96. Значит, раньше приехал Вася.
30 Сколько будет полторы трети от 100 ? Ответ: 100*(1,5:3)=(150:3)=50
31 В некотором месяце 5 суббот. Может ли в нём быть 5 вторников ? Ответ : 5 суббот: если месяц начнётся с субботы, то до пятой субботы ещё 4 недели – всего 29 дней. От субботы до вторника – 3 дня, 29+3=32 дня в месяце. Нет, не может.