1
ЗАДАЧА О МГНОВЕННОЙ ВЕЛИЧИНЕ ТОКА Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t. Пусть Δt – некоторый промежуток времени, Δq = q(t+Δt) – q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от момента t до момента t + Δt. Тогда отношение называют средней силой тока. Мгновенной силой тока в момент времени t называется предел отношения приращения количества электричества Δq ко времени Δt, при условии, что Δt0.
Задача о скорости химической реакции Средняя скорость растворения соли в воде за промежуток времени [t 0 ;t 1 ] (масса соли, растворившейся в воде изменяется по закону х=f(t)) определяется по формуле Скорость растворения в данный момент времени
Различные задачи привели в процессе решения к одной и той же математической модели – пределу отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю. Значит, эту математическую модель надо специально изучить, т.е.: 1) Присвоить ей новый термин. 2) Ввести для неё обозначение. 3) Исследовать свойства новой модели. 4) Определить возможности применения нового понятия - производная
Производной функции f в точке х 0 называется предел отношения приращения функции к приращению аргумента при последнем стремящимся к нулю:
Возвращаясь к рассмотренным задачам, важно подчеркнуть следующее: а) мгновенная скорость неравномерного движения есть производная от пути по времени; б) угловой коэффициент касательной к графику функции в точке (x 0 ; f(x)) есть производная функции f(x) в точке х = х 0 ; в) мгновенная сила тока I(t) в момент t есть производная от количества электричества q(t) по времени; г) скорость химической реакции в данный момент времени t есть производная от количества вещества у(t), участвующего в реакции, по времени t.
А Л Г О Р И Т М 1) 1) x = x – x 0 2) 2) f = f(x+x 0 ) – f(x 0 )3)4)
Аппарат производной можно использовать при решении геометрических задач, задач из естественных и гуманитарных наук, экономических задач оптимизационного характера. И, конечно, не обойтись без производной при исследовании функции и построении графиков, решении уравнений и неравенств «…нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира…» Н.И. Лобачевский
Средняя скорость = Мгновенная скорость или Скорость изменения функции Значение производной в точке =