1 ЗАДАЧА О МГНОВЕННОЙ ВЕЛИЧИНЕ ТОКА Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t. Пусть.

Презентация:



Advertisements
Похожие презентации
ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ 1. Задачи, приводящие к понятию производной Составила учитель математики МОУ «Гимназия им. Горького А.М.»: Фабер Г.Н.
Advertisements

Задачи, приводящие к понятию производной. Цели урока рассмотреть задачи, приводящие к понятию производной; ввести понятие производной.
Задачи, приводящие к понятию производной. X Y
Производная и дифференциал.. Геометрический смысл производной секущая Будем М М 0. Тогда секущая М 0 М занимает соответственно положения М 0 М 1, М 0.
Физический смысл производной «… нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира …» Н.И. Лобачевский.
Проблемы и суждения Подготовила: учитель математики МОУ СОШ 3 г.Аркадака ЗЕНОВА ОЛЬГА АНАТОЛЬЕВНА МАТЕМАТИКА В СИСТЕМЕ МЕТАПРЕДМЕТНЫХ ЗНАНИЙ УЧАЩИХСЯ.
Задача 1 (о скорости движения). По прямой, на которой заданы начало отсчета, единица измерения (метр) и направление, движется некоторое тело (материальная.
1 2 Определение производной функции в точке Непрерывность дифференцируемой функции Дифференциал функции Геометрический смысл производной и дифференциала.
ПРОИЗВОДНАЯ ФУНКЦИИ В ТОЧКЕ Лекция 1 Дифференциальное исчисление Автор: И. В. Дайняк, к.т.н., доцент кафедры высшей математики БГУИР.
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Применение производных к решению задач 10 класс Р.О. Калошина, ГБОУ лицей 533.
Применение производной в физике Алгебра и начала анализа 10 класс.
Определение производной производной Задача о вычислении мгновенной скорости s ( t ) = 4 t² - закон движения материальной точки по прямой s - путь, пройденный.
Лектор Пахомова Е.Г г. Математический анализ Раздел: Дифференциальное исчисление Тема: Производная функции.
2. Определение производной 1. Приращение аргумента и приращение функции 6. дифференцирование – нахождение производной данной функции f (X) 5. геометрический.
Пусть функция y=f(x) определена на промежутке Х. Выберем точку Дадим аргументу x приращение Δx, тогда функция получит приращение Δy=f(x+Δx)- f(x).
Выполнено ученицей 10 класса «А» ГБОУ СОШ 323 Викторией Петровой.
Национальный исследовательский Белгородский государственный университет.
Производная и ее применение Выполнила : Федотова Анастасия.
11 класс t S(t) Зависимость S от t, задаваемую функцией S(t), называют законом движения точки 0.
Транксрипт:

1

ЗАДАЧА О МГНОВЕННОЙ ВЕЛИЧИНЕ ТОКА Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t. Пусть Δt – некоторый промежуток времени, Δq = q(t+Δt) – q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от момента t до момента t + Δt. Тогда отношение называют средней силой тока. Мгновенной силой тока в момент времени t называется предел отношения приращения количества электричества Δq ко времени Δt, при условии, что Δt0.

Задача о скорости химической реакции Средняя скорость растворения соли в воде за промежуток времени [t 0 ;t 1 ] (масса соли, растворившейся в воде изменяется по закону х=f(t)) определяется по формуле Скорость растворения в данный момент времени

Различные задачи привели в процессе решения к одной и той же математической модели – пределу отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю. Значит, эту математическую модель надо специально изучить, т.е.: 1) Присвоить ей новый термин. 2) Ввести для неё обозначение. 3) Исследовать свойства новой модели. 4) Определить возможности применения нового понятия - производная

Производной функции f в точке х 0 называется предел отношения приращения функции к приращению аргумента при последнем стремящимся к нулю:

Возвращаясь к рассмотренным задачам, важно подчеркнуть следующее: а) мгновенная скорость неравномерного движения есть производная от пути по времени; б) угловой коэффициент касательной к графику функции в точке (x 0 ; f(x)) есть производная функции f(x) в точке х = х 0 ; в) мгновенная сила тока I(t) в момент t есть производная от количества электричества q(t) по времени; г) скорость химической реакции в данный момент времени t есть производная от количества вещества у(t), участвующего в реакции, по времени t.

А Л Г О Р И Т М 1) 1) x = x – x 0 2) 2) f = f(x+x 0 ) – f(x 0 )3)4)

Аппарат производной можно использовать при решении геометрических задач, задач из естественных и гуманитарных наук, экономических задач оптимизационного характера. И, конечно, не обойтись без производной при исследовании функции и построении графиков, решении уравнений и неравенств «…нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира…» Н.И. Лобачевский

Средняя скорость = Мгновенная скорость или Скорость изменения функции Значение производной в точке =