УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.

Презентация:



Advertisements
Похожие презентации
1 Подготовка к ЕГЭ Задания С 2. Углом между наклонной и плоскостью называется угол между этой наклонной и ее проекцией на данную плоскость. Прямая, перпендикулярная.
Advertisements

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ В ПРОСТРАНСТВЕ Расстоянием между точкой и плоскостью в пространстве называется длина перпендикуляра, опущенного из.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
1. В кубе A…D 1 найдите угол между прямыми AB 1 и BC 1. Ответ: 60 o.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
Решение задания С2 «Расстояние между прямыми» Вариант 9(2014) Работу выполнил ученик 11 «Б» Позняк Владислав ГБОУ СОШ 145 г.Санкт-Петербург Учитель Эмануэль.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Изобразите сечение правильной треугольной призмы ABCA 1 B 1 C 1, все ребра которой равны 1, проходящее через середины ребер AA 1, BB 1, CC 1. Найдите его.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Транксрипт:

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость. Считают также, что прямая, перпендикулярная плоскости, образует с этой плоскостью прямой угол.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между прямой и плоскостью: AA 1 и ABC 1. Ответ:

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между прямой и плоскостью: AA 1 и AB 1 C 1. Ответ:

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между прямой и плоскостью: AB и BB 1 C 1. Ответ: 60 o.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между прямой и плоскостью: AB и A 1 BC 1. Решение: Искомый угол равен углу B 1 A 1 O, где O – основание перпендикуляра, опущенного из точки B 1 на плоскость A 1 BC 1. Из прямоугольного треугольника BB 1 D находим Следовательно,

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между прямой и плоскостью: AB 1 и BB 1 C 1. Решение: Искомый угол равен углу B 1 AD, где D – середина ребра BC. Следовательно,

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между прямой и плоскостью: AB 1 и ABC 1. Решение: Достроим треугольную призму до четырехугольной. BEE 1 B 1 – сечение, перпендикуляр- ное CD. B 1 O перпендикулярен BE 1. Искомый угол равен углу B 1 AO. Из прямоугольного треугольника BB 1 E 1 находим Следовательно,