10 класс Что такое? Пирамидой ( SABCD ) называется многогранник, который состоит из плоского многоугольника - основания пирамиды ( ABCD ), точка S, не.

Презентация:



Advertisements
Похожие презентации
10 класс ПИРАМИДА слайд-лекция. 10 класс Слово «пирамида» в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые.
Advertisements

Геометрические фигуры и их площади S = S = a S = ab S = 6.
Пирамиды. Многопрофильная гимназия 79 ОТКРЫТЫЙ УРОК « » «ГЕОМЕТРИЧЕСКАЯ ПИРАМИДА И ЕЁ ПРОЕКЦИЯ» Учитель: Волкова Лидия Николаевна Учитель: Волкова Лидия.
Пирамида.
От Рыбакова Дмитрия. Пирамидой называется многогранник, который состоит из плоского многоугольника --- основания пирамиды, точки, не лежащей в плоскости.
Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, -
Пирамида высотой Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотойпирамиды А 1 А 1 А 2 А 2 АnАn Р А 3 А 3 Многогранник,
Геометрия Пирамида. Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания.
Пирамида Подготовили : Асадова Ламия, Шимонаев Павел, Волкова Екатерина, Балыбин Артем, Олзоев Тимур.
Хорьяковой Екатерины 11 «А» класс. П ИРАМИДА. Пирамида-многогранник, составленный из n- угольника и n треугольников.
Задача на слайде 7.3. Дано: МАВСДЕ – пирамида АМ = 12 Найти: МО, АО, СО, МС Решение Рассмотрим 300 МС = 2МО (свойство катета, лежащего против угла в 300)
ПИРАМИДА Автор: Димитриева Анастасия. α А1А1 А2А2 АnАn P H Определение Пирамида – многогранник, составленный из n - угольника А 1 А 2 …А n и n треугольников.
ПИРАМИДА
Двугранный угол Двугранный угол – это фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Грань Ребро Грань Линейный угол.
Геометрия Виды геометрических фигур и их измерения 1. Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех.
Презентация на тему «ПИРАМИДА» Определение и классификация пирамид Внешний вид и свойства пирамиды Разновидности пирамиды Формулы площадей поверхности.
Пирамида Многогранник, составленный из многоугольника A 1 A 2 …A n и n треугольников называется n-угольной пирамидой.
Презентация по геометрии Тема: «Пирамида». Определение Пирамидой называется многогранник, который состоит из плоского многоугольника --- основания пирамиды,
Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания различают пирамиды.
BC E M H Многогранник, составленный из n-угольника АB…E и n- треугольников, называется пирамидой. S полн = S бок + S осн BC E M H.
Транксрипт:

10 класс Что такое? Пирамидой ( SABCD ) называется многогранник, который состоит из плоского многоугольника - основания пирамиды ( ABCD ), точка S, не лежащая в плоскости основания, - вершиной пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания. Треугольники SAB, SBC, SCD, SDA - боковые грани. Прямые SA, SB, SC, SD - боковые ребра пирамиды. Перпендикуляр SO, опущенный из вершины на основание, называется высотой пирамиды и обозначается Н. Пирамида называется правильной, если ее основание - правильный многоугольник, а высота ее проходит через центр основания. Боковые грани правильной пирамиды - равнобедренные треугольники, равные между собой. Высота боковой грани правильной пирамиды - апофема пирамиды. Треугольная пирамида называется тетраэдром.

10 класс Правильная пирамида Отметим некоторые свойства правильной n-угольной пирамиды на примере треугольной пирамиды.Как известно центр правильного треугольника совпадает с центром вписанной и описанной около него окружности. Поэтому отрезки АО, ВО и СО равны как радиусы. Поэтому прямоугольные треугольники АОМ, ВОМ и СОМ равны по двум катетам (МО-общая). Из равенства этих треугольников следует равенство соответствующих сторон: АМ=ВМ=СМ Свойство 1: Свойство 1: В правильной n-угольной пирамиде все боковые ребра равны между собой. Из равенства ребер следует и равенство боковых граней. Треугольники АВМ, ВСМ и АСМ равны по трем сторонам. Свойство 2: Свойство 2: Все боковые грани правильной n-угольной пирамиды суть равные равнобедренные треугольники, поэтому все плоские углы при вершине равны, все плоские углы при основании равны. Из равенства прямоугольных треугольников ОРМ, ОТМ и ОКМ (ОТ=ОР=ОК как радиусы вписанной окружности; МО - общая) следует равенство всех двугранных углов при основании пирамиды РОРМ=РОТМ=РОКМ Свойство 3: Свойство 3: В правильной n-угольной пирамиде все двугранные углы при основании равны.

10 класс Формулы для пирамид Площадью полной поверхности Площадью полной поверхности пирамиды называется сумма площадей всех её граней S полн =S бок +S осн ; Площадь боковой поверхности пирамиды Площадь боковой поверхности пирамиды – сумма площадей её боковых граней; Площадь боковой грани Площадь боковой грани S бок.гр =1/2 x m x \g\ S бок.гр =1/2 x m x \g\, где m – апофема, \g\ - основание грани; Теорема: Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему S бок =1/2 x (P осн x m), где m – апофема, Р – периметр многоугольника основания; Объём пирамиды Объём пирамиды V=(1/3) x S осн x h.

Задача 1: Задача 1: Основание пирамиды – треугольник, две стороны которого равны 1 и 2, а угол между ними равен 60˚. Каждое боковое ребро равно 13. Найдите объем пирамиды. Решение. Так как все ребра (боковые) пирамиды равны, они одинаково наклонены к основанию, и вершина пирамиды проектируется в центр описанной вокруг основания окружности. (см. чертеж). Объем пирамиды:,, Высоту SO можно найти по т. Пифагора например, из треугольника ASO. Для этого нужно найти AO – радиус описанной окружности основания. Воспользуемся теоремой синусов:.Но сначала по теореме косинусов найдем сторону BC:, BC=. Теперь вычислим радиус описанной окружности: Найдем SO:. Ответ: V=1. Вычислим объем:. Ответ: V=1. Задача

10 класс А под конец… Слово «пирамида» в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые знаменитые пирамиды в мире. Другая теория выводит этот термин из греческого слова «пирос» (рожь) – считают, что греки выпекали хлебцы, имевшие форму пирамиды