Точки и линии, связанные с треугольником Цель моей работы изучить более подробно, чем это сделано в школьном курсе произвольный треугольник и самые знаменитые,

Презентация:



Advertisements
Похожие презентации
Замечательные точки треугольника. Презентацию подготовил: Ученик 8 "В" класса Давлитшин Павел Калининград 2009.
Advertisements

Замечательные точки треугольника. Презентацию подготовил: Ученик 8 «г" класса Боранбаева Лилия Бектуганова Зарина Талдыкорган 2012.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется Отрезок, соединяющий вершину треугольника с серединой противоположной.
Замечательная точка треугольника Точка пересечения медиан треугольника. Работа ученика 8 класса Султангалина Ромы 2009г.
Медиана, биссектриса, высота треугольника. Теорема: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой и причем только один.
Треугольником называется фигура, состоящая из трех точек, не лежащих на одной прямой, трех отрезков, соединяющих эти точки, а также части плоскости, ограниченной.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника,то такие треугольники.
По сторонам: 1.Разносторонний 2.Равносторонний 3.Равнобедренный По углам: 1.Остроугольный 2.Прямоугольный 3.Тупоугольный.
Медианы, биссектрисы и высоты треугольника. МЕДИАНА Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой.
Т Р Е У Г О Л Ь Н И К И Т Р Е У Г О Л Ь Н И К И П Р О Е К Т М К О У Х р е н о в с к а я С О Ш г.
Что означает выражение С 1 С 1 В 1 В 1 А 1 А 1 С В А.
Повторение за курс базовой школы Преподаватель математики Луцевич Н.А.
Четыре замечательные точки треугольника г. Пермь, 2012 Гимназия 1 Учитель математики Медведева Л.П.
Треугольники 1.Треугольник. 2.Виды треугольников. 3.Основные линии в треугольнике. 4.Признаки равенства треугольников. 5.Сумма углов треугольника. 6.Внешние.
Треугольники. Задачи на построение.. Содержание: Определение Виды треугольника Первый признак равенства треугольников. Доказательство. Второй признак.
В ы п о л н и т е с т и п р о в е р ь з н а н и е т е о р и и.
Замечательные точки окружности. I. Математический диктант Вариант 1 1. Биссектрисой треугольника называется … 2. Высотой треугольника называется … 3.
Замечательные точки треугольника Работу выполнили учащиеся 7 «А» класса: Кромова И. и Колмакова Ю.
Многоугольники. Виды многоугольников. Внутренние и внешние углы выпуклого многоугольника. Сумма внутренних углов выпуклого n-угоьника (теорема). Сумма.
Теорема Чевы. Замечательные точки треугольника. Семенова Анастасия 8 « Б »
Транксрипт:

Точки и линии, связанные с треугольником Цель моей работы изучить более подробно, чем это сделано в школьном курсе произвольный треугольник и самые знаменитые, связанные с ним точки и линии. В моей работе рассматривается ряд теорем и приведены все доказательства. Сегодня я перечислю основные факты и докажу одну из самых интересных, на мой взгляд, теорему.

О биссектрисах внешних углов Начала я изучение треугольника с известных всем линий – биссектрис углов. В геометрии рассматриваются как биссектрисы внутренних углов треугольника, так и внешних. Уже семиклассникам известно, что биссектрисы внутренних углов треугольника конкурентны, т. е. пересекаются в одной точке. Как же обстоит дело с внешними биссектрисами? Оказывается, что внешние биссектрисы любых двух углов треугольника конкурентны с внутренней биссектрисой третьего угла. C

Теорема Штейнера-Лемуса Кроме того оказалось, что любой треугольник, у которого равны длины биссектрис двух углов (измеряемые от вершины до противоположной стороны) является равнобедренным. Это теорема носит имя Штейнера-Лемуса. Она сотни лет считалась трудной для доказательства, однако на сегодняшний день она доказана.

Ортотреугольник Другие знаменитые линии треугольника – его высоты. Их тоже изучают в школьном курсе. Все высоты конкурентны и их общая точка называется ортоцентром. Треугольник, вершинами которого являются основания высот исходного треугольника, называется ортотреугольником. Поэтому следующее, что я изучала был ортотреугольник. Я выяснила, что ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.

Прямая Эйлера Третья знаменитая линия треугольника - медиана. Как известно все три медианы тоже конкурентны, их общая точка называется центроидом. В моей работе доказано, что ортоцентр, центроид и центр описанной окружности произвольного треугольника лежат на одной прямой. Причем центроид делит расстояние от ортоцентра до центра описанной окружности в отношении 2:1. Прямая же, на которой лежат эти три точки, носит название прямой Эйлера этого треугольника. C

Окружность девяти точек Кроме того, известен и другой замечательный факт: основания трех высот произвольного треугольника, середины трех его сторон и середины трех отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности, называемой окружностью девяти точек этого треугольника. Последний вопрос, который я изучила и отразила в своей работе, связан с расположением окружности девяти точек и прямой Эйлера. Доказано, что центр окружности девяти точек лежит на прямой Эйлера, точно в середине отрезка, между ортоцентром и центром описанной окружности. Доказательство этого самого интересного, на мой взгляд, факта я сейчас и приведу.

Так как три точки K, L, M диаметрально противоположны точкам A, B, C, то каждый из двух треугольников KLM или ABC может быть получен из другого поворотом на 180 o вокруг центра этой окружности. Очевидно, что этот поворот, который меняет местами эти два равных треугольника, должен так же поменять местами и их ортоцентры H и O. Следовательно, центром окружности девяти точек является середина отрезка OH, которая обозначена точкой N. Таким образом, N – центр окружности девяти точек.