Решение некоторых иррациональных уравнений. г. Мурманск МБОУ гимназия 3 Шахова Татьяна Александровна.
Необходимые умения и навыки: 3) умение решать квадратные уравнения; 4) вычислительные умения и навыки. 1) умение решать линейные уравнения; 2) умение применять формулу: квадрат суммы (разности);
Иррациональным уравнением называется уравнение, содержащее переменную под знаком корня. Рассмотрим некоторые виды иррациональных уравнений. ОДЗ: 1.1. Условие существования квадратного корня Ø При условии, что обе части неотрицательны, имеем право возвести их в квадрат. Осталось решить полученное уравнение.
Пример 1. ОДЗ: Условие существования квадратного корня -является решением
Пример 2. ОДЗ: Условие существования квадратного корня Но, правая часть отрицательна => Ø Пример 3. ОДЗ: Условие существования квадратного корня -является решением
Иррациональным уравнением называется уравнение, содержащее переменную под знаком корня. Рассмотрим некоторые виды иррациональных уравнений. ОДЗ: 2. Условие существования квадратного корня При условии, что обе части уравнения неотрицательны, имеем право возвести их в квадрат. Осталось решить полученное уравнение с заданными условиями. Условие существования корней уравнения
Пример 4. ОДЗ: УСК: При условии, что обе части уравнения неотрицательны, имеем право возвести их в квадрат. -не является решением -является решением Осталось решить полученное уравнение с заданными условиями.
Иррациональным уравнением называется уравнение, содержащее переменную под знаком корня. Рассмотрим некоторые виды иррациональных уравнений. ОДЗ: 3.3. Условие существования квадратного корня При условии, что обе части уравнения неотрицательны, имеем право возвести их в квадрат. Осталось решить полученное уравнение с заданными условиями.
Пример 5. ОДЗ: При условии, что обе части уравнения неотрицательны, имеем право возвести их в квадрат. -является решением Осталось решить полученное уравнение с заданными условиями.
Иррациональным уравнением называется уравнение, содержащее переменную под знаком корня. Рассмотрим некоторые виды иррациональных уравнений. ОДЗ: 4.4. Условие существования квадратного корня При условии, что обе части уравнения неотрицательны, имеем право возвести их в квадрат. Уединим корень и еще раз возведем обе части уравнения в квадрат. На практике намного проще. Рассмотрим пример.
Пример 6. ОДЗ: При условии, что обе части уравнения неотрицательны, имеем право возвести их в квадрат. -является решением
Пример 7. ОДЗ: При условии, что обе части уравнения неотрицательны, имеем право возвести их в квадрат. -является решением
Для отработки навыка решения таких уравнений воспользуйся задачником А. Г. Мордкович. Если не получается ответ, обращайся за помощью.