Готовимся к ЕГЭ. Прототипы В9, В11. Призма. В создании презентации принимали участие ученики 10А класса. Научный руководитель: Шахова Татьяна Александровна год
3
4 Объем призмы равен произведению площади основания на высоту. h h
В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 1. Найдите расстояние между точками A и E 1. Никифорова Екатерина 10А Рассмотрим прямоугольный треугольник По теореме Пифагора: В треугольнике угол между сторонами правильного треугольника равен По теореме косинусов: Значит Ответ : 2 1
В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 1. Найдите расстояние между точками B и E. 2 Ответ: Богданов Владимир 10А 2 AB C D E F A1B1 C1 D1E1 F1 1 BE является большой диагональю правильного шестиугольника BЕ в два раза больше стороны шестиугольника. BE = 2
В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 5. Найдите расстояние между точками B и E 1. 3 BE является большой диагональю правильного шестиугольника => в два раза больше его стороны. Шахова Татьяна 10АБВ Ответ: 5
В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 1. Найдите тангенс угла AD 1 D. Ответ: 4 Гречуха Валерия 10А ВА C D E F F1F1 F1F1 B1B1 A1A1 C1C1 D1D1 E1E1 D D1D1 A 1 A D 2 Тангенс угла AD 1 D равен отношению противолежащего катета AD к прилежащему DD 1 Большая диагональ правильного шестиугольника в два раза больше его стороны 2 2
В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 1. Найдите угол DAB. Ответ дайте в градусах. AD-биссектриса угла BAF Ответ: 60 5 Гурьева Дарья 10А А BC D EF В правильном шестиугольнике углы равны 120˚ DAB = 0,5·BAF=60˚ A1A1 B1B1 C1C1 D1D1 E1E1 F1F1
В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 1. Найдите угол AC 1 C. Ответ дайте в градусах. Ответ: 60 6 Карагяур Лилия 10А 1 А ВС D EF A1 B1C1 D1 E1F1 C1 C A ? 1 B AC x По теореме косинусов:
В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 8, найдите угол между прямыми FA и D 1 E 1. Ответ дайте в градусах. 7 АF параллельна C 1 D 1 => угол между АF и Е 1 D 1 =углу между C 1 D 1 и Е 1 D 1 Угол правильного шестиугольника = Ответ: 120 Шахова Татьяна 10АБВ
Площадь поверхности правильной треугольной призмы равна 6. Какой будет площадь поверхности призмы, если все ее ребра увеличить в три раза? 8 Ответ: 54 Гречуха Валерия 10А h a 3h 3a Разделим 1 ое на 2 ое Оснований – два + три прямоугольника
В правильной четырёхугольной призме ABCDA 1 B 1 C 1 D 1 известно, что AC 1 =2BC. Найдите угол между диагоналями BD 1 и CA 1. Ответ дайте в градусах. Ответ: 60 9 Гурьева Дарья 10А A BC D A1A1 B1B1 C1C1 D1D1 K K A1A1 B C D1D1 Диагонали прямоугольного параллелепипеда равны. Диагональное сечение является прямоугольником. Правильная четырехугольная призма является прямоугольным параллелепипедом. AC 1 =2BC=>A 1 C=2BC=> B C A1A1 Угол A 1 =30 0 Угол К = 60 0 Угол С=60 0 CB K 60 0 ? Треуг. КСВ – р/б
В сосуд, имеющий форму правильной треугольной призмы, налили 2300 см 3 воды и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде поднялся с отметки 25 см до отметки 27 см. Чему равен объем детали? Ответ выразите в см 3. Ответ: 10 Богданов Владимир 10А 184 Разделим первое на второе Объем детали =
В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 80 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 4 раза больше, чем у первого? Ответ выразите в см. 11 а 4 а Шахова Татьяна 10АБВ 80 h Объемы равны. Приравняем правые части. Ответ: 5
Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота 10. Ответ: 12 Смирнова Анастасия 10 А Площадь боковой поверхности фигуры равна сумме площадей всех боковых граней Все боковые грани – равные прямоугольники со сторонами 5 и 10.
Никифорова Екатерина 10А Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10. Найдем сторону ромба: Найдем площадь ромба: Тогда Ответ:
Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна =800+80x 80x=960 x=1212 Ответ: 20 Карагяур Лилия 10А Пусть боковое ребро х. 20 х Боковые грани – равные прямоугольники со Сторонами = х и 20, основания – квадраты со стороной = 20 14
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы Ответ: 120 Шахова Татьяна 10АБВ
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро. 17 Рассмотрим прямоугольный треугольник - площадь основания Ответ: Смирнова Анастасия 10 А 4
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро. Ответ: 17 Коваль Дмитрий 10А А1А1 В1В1 С1С1 А В С А В С 3 5 h Боковое ребро прямой призмы является высотой 4
Найдите объем правильной шестиугольной призмы, стороны основания которой равны 1, а боковые ребра равны Ответ: 4,5 18 Коваль Дмитрий 10А Найдем площадь основания. Составлено из шести равносторонних треугольников 1
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы. 19 A1 B C N1 M M1 C1 A B1 N Шахова Татьяна 10АБВ Высоты равны. Сравним площади оснований. A C B M N Треугольники подобны с коэффициентом подобия= ½ => их площади относятся как ¼. Разделим первое на второе. Ответ: 1,25
Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны и наклонены к плоскости основания под углом Ответ: 20 Хачатрян Нателла 10А Найдем площадь основания. 18 Составлено из шести равносторонних треугольников 2 h Найдем высоту h
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, высота призмы равна 10. Найдите площадь ее поверхности S 1 =? 6 8 Гипотенуза= 10 S 2 =24 S 1 =24 S 3 =610=60 S 4 =810=80 S 5 =1010=100 S= =288 Ответ: 288 Хачатрян Нателла 10А
Николаева Ксения 10А В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248. Найдите боковое ребро этой призмы. 2) Найдем площадь боковых граней: Ответ: 10 1) Найдем площадь ромба: 3) Найдем площадь одной грани: 4) Из треугольника ВНС найдём ВС: св-во параллелограмма 5) Найдём боковое ребро призмы: 23
Николаева Ксения 10А В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 10 и отстоит от других боковых ребер на 6 и 8. Найдите площадь боковой поверхности этой призмы. Ответ: Покажем расстояния от АА 1 до других боковых ребер. Угол К – линейный угол двугранного прямого угла. КМL – перпендикулярное сечение призмы. Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы. 25 Шахова Татьяна 10АБВ Площадь поверхности состоит из площадей оснований и площадей боковых граней, которые являются прямоугольниками. Ответ: 10
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы. Сравним соответствующие грани Ответ: 26 Привалова Анастасия 10А A1 B C N1 M M1 C1 A B1 N Т.о. S всех боковых граней большой призмы больше S граней маленькой призмы в 2 раза => 16
Объем куба равен 12. Найдите объем треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух ребер, выходящих из одной вершины и параллельной третьему ребру, выходящему из этой же вершины Сравним S осн.куба и S осн.пр Ответ: 1,5 27 Привалова Анастасия 10А a A B C D F E Разделим 1 е на 2 е
В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 3, найдите угол между прямыми AA 1 и BC 1. Ответ дайте в градусах. Ответ: Самошкин Даниил 10А В АА 1 и ВС 1 – скрещивающиеся. А С В1В1 С1С1 А1А1 АА 1 параллельна ВВ 1 => угол между АА 1 и ВС 1 = углу между ВВ 1 и ВС 1 Треугольник ВВ 1 С 1 –прямоугольный и равнобедренный так как призма прямая и все ребра равны. => Угол ВВ 1 С 1 =45 0
Спасибо за работу!