Число вида z=a+bi называется комплексным. a, b – действительные числа, i – мнимая единица. a= Re z - действительная часть числа z. b= Jm z – мнимая часть.

Презентация:



Advertisements
Похожие презентации
Комплексные числа МБОУ Большемаресевская СОШ Мордовия Класс: 11 Учебник: Алгебра и начало анализа. Ю. М. Колягин и др. (профильный уровень) (профильный.
Advertisements

Комплексные числа.. Определение комплексного числа Определение комплексного числаИстория Понятие комплексного числа Понятие комплексного числа Решение.
Комплексные числа.
Комплексные числа «Мнимые числа – это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием». Г. Лейбниц e iπ + 1= 0.
Комплексные числа МБОУ СОШ 99 г.о.Самара Класс: 10 Учебник: Алгебра и начало анализа. А. Г. Мордкович, П. В. Семенов (профильный уровень) (профильный уровень)
LOGO МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Автор: Семёнова Елена Юрьевна.
Комплексные числа «Мнимые числа – это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием». Г. Лейбниц e iπ + 1= 0.
Комплексные числа. Понятие комплексного числа Х+А=В - недостаточно положительных чисел А·Х + В=0 (А0) – разрешимы на множестве рац.чисел Х²=2 или Х³=5.
К о м п л е к с н ы е ч и с л а. Вычислите: Мнимая единица Мнимая единица i – начальная буква французского слова imaginaire – «мнимый»
Комплексные числа Автор проекта: Юрченко Инна, ученица 10 «А» класса Руководитель проекта: Яковлева Т.П. МОУ СОШ 3 г. Соль-Илецк. 2008г. 2008г.
Комплексные числа Автор: Алина Гончарик ученица 10 Б класса МОУ СОШ 2 г. Амурска Руководитель: Горбунова Ирина Анатольевна, учитель математики, МОУ СОШ.
КОМПЛЕКСНЫЕ ЧИСЛА. N C Z C Q C R C C N- natural R- real C - complex Z – исключительная роль нуля zero Q – quotient отношение ( т.к. рациональные числа.
Комплексные числа Козлова Мария 10 «А» класс. i² = - 1 действительных корней нет. i i Но в новом числовом множестве оно должно иметь решение. Для этого.
Комплексные числа История возникновения комплексных чисел.
Тема: КОМПЛЕКСНЫЕ ЧИСЛА МБОУ лицей 1 г. Комсомольск-на-Амуре Чупрова О.С.
После изучения темы «Комплексные числа учащиеся должны: Знать: алгебраическую, геометрическую и тригонометрическую формы комплексного числа. Уметь: производить.
Практическая работа «Действия с комплексными числами»
Федеральное государственное бюджетное образовательное учреждение ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙТЕХНИЧЕСКИЙУНИВЕРСИТЕТ Институт недропользования.
Содержание: Возникновение комплексных чисел Понятие комплексного числа Действия над комплексными числами Геометрическая интерпретация комплексных чисел.
Государственное Образовательное Учреждение Лицей 1523 ЮАО г.Москва Лекции по алгебре и началам анализа 10 класс © Хомутова Лариса Юрьевна.
Транксрипт:

Число вида z=a+bi называется комплексным. a, b – действительные числа, i – мнимая единица. a= Re z - действительная часть числа z. b= Jm z – мнимая часть числа z. z=a+bi – алгебраическая форма комплексного числа.

Комплексные числа Эпиграф: « Мнимые числа- Эпиграф: « Мнимые числа- это прекрасное и чудесное это прекрасное и чудесное убежище божественного убежище божественного духа, почти что амфибия духа, почти что амфибия бытия с небытием» бытия с небытием» (Г.Лейбниц) (Г.Лейбниц)

Иррациональные числа Рациональные числа Действительные числа

Иррациональные числа Рациональные числа Действительные числа + Комплексные числа

Решение квадратных уравнений А · Х²+ В ·Х+ С =0 При D<0 действительных корней нет Иррациональные числа Рациональные числа Действительные числа +

Историческая справка В XVI веке при решении кубических уравнений математики столкнулись с проблемой извлечения квадратных корней из отрицательных чисел. В 1545 году в труде «Великое искусство» итальянский математик Д.Кардано ввел числа новой природы и назвал их «чисто отрицательными» или «софистически отрицательными». В 1572 году итальянский алгебраист Р.Бомбелли ввел правила арифметических операций над такими числами.

В 1637 году французский математик Р.Декард назвал эти числа «мнимыми числами». В 1777 году великий математик Л.Эйлер ввел символ для обозначения числа (i= ). Сам же термин «комплексное число» ввел в 1803 году Л.Карно. Полное геометрическое истолкование «мнимым» величинам дали в своих работах датчанин К.Вессель и француз Ж.Арган в 1831 году. Комплексные числа широко использовал отец русской авиации Н.Е.Жуковский при разработке теории крыла самолета.

Классификация комплексных чисел

Сопряженные числа _ _ z=a+bi, z = a-bi – сопряженные числа z=a+bi, z = a-bi – сопряженные числа Свойства: сумма и произведение двух сопряженных чисел есть действительные Числа _ _ z + z =2a, z * z = a 2 + b 2

Вид комплексного числа Х²=-1 Х= i -корень уравнения i- комплексное число, такое, что i²=-1 А + В· i ЗАПИСЬ КОМПЛЕКСНОГО ЧИСЛА В ОБЩЕМ ВИДЕ

А и В – действительные числа i- некоторый символ, такой, что i²= -1 А – действительная часть В – мнимая часть i – мнимая единица А + В· i

Геометрическая интерпретация комплексного числа

Геометрическое изображение суммы комплексных чисел

Геометрическое изображение разности комплексных чисел

Т.к Z =r = Z= А + В· i= cosφ+i sing

Тригонометрическая форма комплексного числа Z =r φ- аргумент аргумент комплексного числа Z=r cos φ + i Z sin φ = = r (cos φ+ i sin φ) Для Z=0 аргумент не определяется

Сложение и умножение комплексных чисел Алгебраическая форма Геометрическая форма Сумма (A+iB) + (C+iD)= (A+C)+(B+D)I Произведение Z 1 = r 1 (cos φ 1 + i sin φ 1 ) Z 2 = r 2 (cos φ 2 + i sin φ 2 ) Z 1 ·Z 2 = r 1 r 2 [cos( φ 1 + φ 2 )+isin ( φ 1 + φ 2 )] Произведение (A+iB) · (C+iD)= (AC-BD)+(AD+BC)i

Примеры: Найти разность и частное комплексных чисел Решение:

Литература., Колягин Ю.М., М.В.Ткачева. и др/ Алгебра и начала математического анализа 11 кл, Просвещение 2010 г,