Неперпендикулярные плоскости и пересекаются по прямой МN. В плоскости из точки А проведен перпендикуляр АВ к прямой МN и из той же точки А проведен перпендикуляр.

Презентация:



Advertisements
Похожие презентации
Перпендикулярность плоскостей Перпендикулярность плоскостей.
Advertisements

Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я TTП АС ВМ H-я H-я АС NМ П-я П-я Угол ВMN.
ПланиметрияСтереометрия Углом на плоскости мы называем фигуру, образованную двумя лучами, исходящими из одной точки. Двугранный угол АВ С АВ С.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я ОTTП АС ВМ H-я H-я АС NМ П-я П-я Угол.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются.
Д в у г р а н н ы й у г о л. Двугранным углом называется фигура, образованная прямой a и двумя полуплоскостями с общей границей a, не принадлежащими одной.
Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Верно ли, что две прямые, параллельные одной плоскости, перпендикулярны (две прямые, перпендикулярные к одной плоскости, параллельны). 2.Может.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Вдохновение есть расположение души к живейшему принятию впечатлений и соображению понятий, следственно, и объяснению оных. Вдохновение нужно в геометрии,
Плоскости и пересекаются по прямой a и перпендикулярны к плоскости. Докажите, что прямая а перпендикулярна к плоскости a.
Двугранный угол. Перпендикулярность плоскостей.. Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а,
Признак перпендикулярности двух плоскостей Выполнила ученица 10 класса Гаспринская Лена.
Перпендикулярность прямых и плоскостей. Перпендикулярные прямые в пространстве Две прямые называются перпендикулярными, если угол между ними равен 90.
Транксрипт:

Неперпендикулярные плоскости и пересекаются по прямой МN. В плоскости из точки А проведен перпендикуляр АВ к прямой МN и из той же точки А проведен перпендикуляр АС к плоскости. Докажите, что угол АВС – линейный угол двугранного угла АМNC M N А С В П-р Н-я П-я TTП МN АB H-я MN ВС П-я Угол АВС – линейный угол двугранного угла АМNC

С А В D M В тетраэдре DАВС все ребра равны, точка М – середина ребра АС. Докажите, что угол DМВ – линейный угол двугранного угла ВАСD

Двугранный угол равен. На одной грани этого угла лежит точка, удаленная на расстояние d от плоскости другой грани. Найдите расстояние от этой точки до ребра двугранного угла В d N А ?

Даны два двугранных угла, у которых одна грань общая, а две другие грани являются различными полуплоскостями одной плоскости. Докажите, что сумма этих двугранных углов равна FВ А О

Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я TTП АС ВМ H-я H-я АС NМ П-я П-я Угол ВMN – линейный угол двугранного угла ВАСК К M D Повторение.

Построить линейный угол двугранного угла ВАСК. АВСD – четырехугольник, АС - диагональ. А В N П-р Н-я П-я TTП АС ВС H-я H-я АС NС П-я П-я Угол ВСN – линейный угол двугранного угла ВАСК К С D 2 15Повторение.

Построить линейный угол двугранного угла ВАСК. АВСD – четырехугольник, АС – диагональ. А В N П-р Н-я П-я TTП АС ВS H-я H-я АС NS П-я П-я Угол ВSN – линейный угол двугранного угла ВАСК К С S D Повторение.

Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90 0.

Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты, Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты, плоскости стены и потолка. плоскости стены и потолка.

Признак перпендикулярности двух плоскостей. Признак перпендикулярности двух плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.АВСD

Следствие. Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой их этих плоскостей. a

Плоскости и взаимно перпендикулярны пересекаются по прямой с. Докажите, что любая прямая плоскости, перпендикулярная к прямой с, перпендикулярна к плоскости cA a b Признак перпендикулярности прямой и плоскости c BC Подсказка

Докажите, что плоскость и не лежащая в ней прямая, перпендикулярные к одной и той же плоскости, параллельны cb a a b Признак параллельности прямой и плоскости Подсказка