Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.

Презентация:



Advertisements
Похожие презентации
(урок 2) Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Advertisements

Площадь треугольника. Геометрия 8 класс.. Устная работа. А В С D 6 см 10 см К ABCD – параллелограмм. Найти площадь параллелограмма.
(урок 1) Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
(урок 1) Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
(урок 2) Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
(урок 3) Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Задание В 6 ЕГЭ Геометрия 9 Урок 1 Устная работа.
Теорема: AD - основание BH – высота S = ADBH S = a h Площадь параллелограмма равна произведения его основания на высоту. А B C D H a h.
Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Площади многоугольников Презентация Бегаева А. Ученика 8 А класса.
(урок 2) Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
(урок 2) Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011.
Подготовка к ГИА по геометрии Четырехугольник Устные задачи.
Площади параллелограмма, треугольника и трапеции.
Транксрипт:

Урок: геометрия Класс: 8 Учитель: Садовникова Т.А. Учебник: А.Г.Атанасян Год издания 2011

Смежные стороны параллелограмма ABCD, равные 8 см и 12 см, образуют угол в 30°. Найдите площади треугольников ABC и ABD.

Площадь треугольника равна половине произведения его основания на высоту Достроим треугольник ABC до параллелограмма ABCD. ΔABC=ΔDCB S ABC =S DCB S ABCD =S ABC+ S DCB S ABCD =2 S ABC S ABC=1\2 S ABCD S ABC=1\2 AB*CH

Решаем задачи: 4 68 ( а, г), 471(а), 475

Домашнее задание Вопросы 5 (с. 129) Задачи 467, 468(б, в), 471(б), 474(устно)