ЭЛЕМЕНТЫ АЛГЕРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ.

Презентация:



Advertisements
Похожие презентации
Высказывание. Логические операции. МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ Урок 8 По данной теме урок 7 Классная работа
Advertisements

Высказывание. Логические операции Высказывание. Логические операции Информатика 8 класс Токар И.Н.
ЭЛЕМЕНТЫ АЛГЕРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ.
ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ.
ЭЛЕМЕНТЫ АЛГЕРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ.
Логическая информация и основы логики.. Алгебра логики – это наука об общих операциях, которые могут выполняться над логическими выражениями. Логическое.
ОСНОВЫ ЛОГИКИ. (С) Болгова Н.А ФОРМЫ МЫШЛЕНИЯ ЛОГИКА это наука о формах и законах человеческого мышления и, в частности, о законах доказательных.
Логическая информация и основы логики.. Алгебра логики – это наука об общих операциях, которые могут выполняться над логическими выражениями. Логическое.
Проверка домашнего задания 6 с , 10 с. 39 РТ 57 6 с Высказывание 1 0 Конъюнкция Дизъюнкция.
Основатель – Аристотель ( гг. до н.э. ) Ввёл основные формулы абстрактного мышления Историческая справка 1 этап – формальная логика.
ОСНОВЫ ЛОГИКИ И ЛОГИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА Алгебра высказываний.
Проверка домашнего задания РТ 51, 52, 54, 55 А = «Солнце движется вокруг земли.» А = «Число 376 четное» В = «Число 376 трехзначное» А В А|ВА|В А = «Новый.
Логические основы ЭВМ Логика высказываний. Рассмотрим несколько утверждений Все рыбы умеют плавать Пять – число четное Некоторые медведи бурые Картины.
ОСНОВЫ ЛОГИКИ ТЕОРИЯ
копирование
ГБПОУ «МСС УОР 2» Москомспорта Преподаватель информатики Володина М.В г.
Алексеева Е.В., учитель информатики и ИКТ, МОУ «Сланцевская СОШ 3» Основы логики.
Логика это наука о формах и способах мышления. Logos (древнегреч.) - «слово, мысль, понятие, рассуждение, закон».
Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических.
Элементы логики Составлено по учебнику Угринович «Информатика и информационные технологии.».
Транксрипт:

ЭЛЕМЕНТЫ АЛГЕРЫ ЛОГИКИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

Ключевые слова алгебра логики высказывание логическая операция конъюнкция дизъюнкция отрицание логическое выражение таблица истинности законы логики

Клод Шеннон ( ). Его исследования позволили применить алгебру логики в вычислительной технике Л огик а Аристотель ( до н.э.). Основоположник формальной логики (понятие, суждение, умозаключение). Джордж Буль ( ). Создал новую область науки - Математическую логику (Булеву алгебру или Алгебру высказываний).

Алгебра - наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться над разнообразными математическими объектами – числами, многочленами, векторами и др. Алгебра

Высказывание - это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное. В русском языке высказывания выражаются повествовательными предложениями: Земля вращается вокруг Солнца. Москва - столица. Побудительные и вопросительные предложения высказываниями не являются. Без стука не входить! Откройте учебники. Ты выучил стихотворение? Высказывание Но не всякое повествовательное предложение является высказыванием: Это высказывание ложное.

Высказывание или нет? Зимой идет дождь. Снегири живут в Крыму. Кто к нам пришел? У треугольника 5 сторон. Как пройти в библиотеку? Переведите число в десятичную систему. Запишите домашнее задание

Алгебра логики определяет правила записи, вычисления значений, упрощения и преобразования высказываний. В алгебре логики высказывания обозначают буквами и называют логическими переменными. Если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей (А = 1), а если ложно - нулём (В = 0). 0 и 1 называются логическими значениями. Алгебра логики

Простые и сложные высказывания Высказывания бывают простые и сложные. Высказывание называется простым, если никакая его часть сама не является высказыванием. Сложные (составные) высказывания строятся из простых с помощью логических операций. Название логической операции Логическая связка Конъюнкция«и»; «а»; «но»; «хотя» Дизъюнкция«или» Инверсия«не»; «неверно, что»

Конъюнкция - логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны. Другое название: логическое умножение. Обозначения: Λ, ·, &, И. АВА&ВА&В Логические операции Таблица истинности:Графическое представление AB А&ВА&В

Дизъюнкция - логическая операция, которая каждым двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны. Другое название: логическое сложение. Обозначения: V, |, ИЛИ, +. АВАVВАVВ Логические операции Таблица истинности:Графическое представление AB АVВАVВ

Инверсия - логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному. Другое название: логическое отрицание. Обозначения: НЕ, ¬, ¯. АĀ Логические операции имеют следующий приоритет: инверсия, конъюнкция, дизъюнкция. Логические операции Таблица истинности:Графическое представление A Ā

Пусть А = «На Web-странице встречается слово "крейсер"», В = «На Web-странице встречается слово "линкор"». В некотором сегменте сети Интернет Web- страниц. В нём высказывание А истинно для 4800 страниц, высказывание В - для 4500 страниц, а высказывание АVВ - для 7000 страниц. Для какого количества Web-страниц в этом случае будут истинны следующие выражения и высказывание? а) НЕ (А ИЛИ В); б) А & B; в) На Web-странице встречается слово "крейсер" И НЕ встречается слово "линкор". Решаем задачу

– 7000 = Web-страниц НЕ (А ИЛИ В) A = 4800, B = = – 2300 = 2500 Web-страниц Представим условие задачи графически: На 2500 Web-страницах встречается слово "крейсер" И НЕ встречается слово "линкор" НЕ (А ИЛИ В) Сегмент Web-страниц ABA&B 9300 – 7000 = 2300 Web-страниц A&B AИB А ИЛИ В

Источники информации b892beca45/?interface=catalog&class=51&subject=19 – Элементарные логические операции 88b892beca45/?interface=catalog&class=51&subject= jpg - Аристотель jpg 3. g - Аристотель g 4. g - Джордж Буль g Клод Элвуд Шеннон мальчик 1http://mdou-teremok.moy.su/kartinki/ab2a40ef409a-1-.png 7. boys.jpg%3Fw%3D283%26h%3D494 – мальчик 2http://falconsscience.files.wordpress.com/2007/10/cartoon- boys.jpg%3Fw%3D283%26h%3D мальчик 3http://s39.radikal.ru/i085/0811/f0/e7c004f3c68a.png